Translator Disclaimer
1995 A Wiener estimate for relaxed Dirichlet problems in dimension $N\geq 2$
Adriana Garroni
Differential Integral Equations 8(4): 849-866 (1995).

Abstract

We prove a Wiener energy estimate for relaxed Dirichlet problems $Lu + \mu u =\nu$ in $\Omega$, with $L$ a uniformly elliptic operator with bounded coefficients, $\mu$ a measure of $\mathcal {M}_0(\Omega)$, $\nu$ a Kato measure and $\Omega$ a bounded open set of $\mathbb{R}^N$, $N \geq 2$. Choosing a particular $\mu$, we obtain an energy estimate also for classical variational Dirichlet problems.

Citation

Download Citation

Adriana Garroni. "A Wiener estimate for relaxed Dirichlet problems in dimension $N\geq 2$." Differential Integral Equations 8 (4) 849 - 866, 1995.

Information

Published: 1995
First available in Project Euclid: 20 May 2013

zbMATH: 0815.35013
MathSciNet: MR1306595

Subjects:
Primary: 35J25
Secondary: 35B45

Rights: Copyright © 1995 Khayyam Publishing, Inc.

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.8 • No. 4 • 1995
Back to Top