1995 Characterization of concentration points and $L^\infty$-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
Adimurthi, Filomena Pacella, S. L. Yadava
Differential Integral Equations 8(1): 41-68 (1995). DOI: 10.57262/die/1369143783

Abstract

$\Omega\subset\mathbb{R}^n(n\geq7)$ be a bounded domain with smooth boundary. For $\lambda>0$, let $u_\lambda$ be a solution of $$ \begin{align} -\Delta u+\lambda u&=u^{n+2\over n-2}\quad\rm{in }\quad\Omega,\\ u&>0\quad\rm{in }\quad\Omega,\\ {\partial u\over\partial\nu}&=0\quad\rm{on }\quad\partial\Omega, \end{align} $$ whose energy is less than the first critical level. Here we study the blow up points and the $L^\infty$-estimates of $u_\lambda$ as $\lambda\to\infty$. We show that the blow up points are the critical points of the mean curvature on the boundary.

Citation

Download Citation

Adimurthi. Filomena Pacella. S. L. Yadava. "Characterization of concentration points and $L^\infty$-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent." Differential Integral Equations 8 (1) 41 - 68, 1995. https://doi.org/10.57262/die/1369143783

Information

Published: 1995
First available in Project Euclid: 21 May 2013

zbMATH: 0814.35029
MathSciNet: MR1296109
Digital Object Identifier: 10.57262/die/1369143783

Subjects:
Primary: 35J65
Secondary: 35B40

Rights: Copyright © 1995 Khayyam Publishing, Inc.

Vol.8 • No. 1 • 1995
Back to Top