May/June 2023 On the eigenvalue set of the $(p,q)$-Laplacian with a Neumann-Steklov boundary condition
Luminiţa Barbu, Gheorghe Moroşanu
Differential Integral Equations 36(5/6): 437-452 (May/June 2023). DOI: 10.57262/die036-0506-437

Abstract

Consider in a bounded domain $\Omega \subset \mathbb{R}^N$, $N\ge 2$, with smooth boundary $\partial \Omega$, the following eigenvalue problem\begin{eqnarray}& ~ & -\Delta_p u-\Delta_q u=\lambda a(x) | u | ^{r-2}u\ \ \mbox{ in}~ \Omega, \nonumber \\ & ~ & \big( | \nabla u | ^{p-2}+ | \nabla u | ^{q-2}\big)\frac{\partial u}{\partial\nu}=\lambda b(x) | u | ^{r-2}u~ \mbox{ on}~ \partial \Omega, \nonumber\end{eqnarray}where $1 < q < r < p < \infty,$ with $r < q(N-1)/(N-q)$ if $q < N$; $a\in L^{\infty}(\Omega),\ b\in L^{\infty}(\partial\Omega)$ are given nonnegativefunctions satisfying $\int_\Omega a~dx+\int_{\partial\Omega} b\,d\sigma > 0.$Under these assumptions, we prove that there exist two positive constants $\lambda_* < \lambda^*$ such that any $\lambda\in \{0\}\cup [\lambda^*, \infty)$ is an eigenvalue of this problem, while the set$(-\infty, 0)\cup (0, \lambda_*)$ contains no eigenvalue of the problem. This result is complementary to previous results related to the above eigenvalue problem.

Citation

Download Citation

Luminiţa Barbu. Gheorghe Moroşanu. "On the eigenvalue set of the $(p,q)$-Laplacian with a Neumann-Steklov boundary condition." Differential Integral Equations 36 (5/6) 437 - 452, May/June 2023. https://doi.org/10.57262/die036-0506-437

Information

Published: May/June 2023
First available in Project Euclid: 27 February 2023

Digital Object Identifier: 10.57262/die036-0506-437

Subjects:
Primary: 35J60 , 35J92 , 35P30

Rights: Copyright © 2023 Khayyam Publishing, Inc.

JOURNAL ARTICLE
16 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.36 • No. 5/6 • May/June 2023
Back to Top