Abstract
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation $$ { \partial_t} u - { \partial_x}^5 u -{ \partial_x}^{-1} { \partial_y}^2u + u{ \partial_x} u = 0, ~(t,x,y)\in\mathbb R\times\mathbb T^2 . $$ We prove global well-posedness for constant $x$ mean value initial data in the space $\mathbf E = \{u\in L^2,~{ \partial_x}^2 u \in L^2, ~{ \partial_x}^{-1} { \partial_y} u \in L^2\}$ which is the natural energy space associated with this equation.
Citation
Tristan Robert. "On the Cauchy problem for the periodic fifth-order KP-I equation." Differential Integral Equations 32 (11/12) 679 - 704, November/December 2019. https://doi.org/10.57262/die/1571731515