Abstract
We are concerned with the uniform positivity preserving property on a domain $D$ of $\mathbb{R}^d$ ($d\geq 3$), for the noncooperative system \begin{equation}\label{sy} \left\{ \begin{array}{cccc} -\Delta u & = & f(.,u)-\mu av & \text{in } D, \\ -\Delta v & = & bu & \text{in }D, \\ \underset{ x \rightarrow \partial_{\infty} D }{\lim }u(x) & = & \underset{ x \rightarrow \partial_{\infty} D}{\lim }v(x) & = 0, \end{array} \right. \end{equation} where $\partial_{\infty}D=\left\{ \begin{array}{ccc} \partial D ,\ \ \mbox{if D is bounded},\\ \partial D\cup \{+\infty\}, \ \ \mbox{if not}. \end{array} \right.$ We give appropriate conditions on $a$, $b$ and $f$ to get the existence and positivity of the solutions with potential control.
Citation
M. Bezzarga. Khaled Kefi. "Positive solution of Laplacian noncooperative system with potential control." Differential Integral Equations 19 (9) 1019 - 1034, 2006. https://doi.org/10.57262/die/1356050330
Information