2006 Positive solution of Laplacian noncooperative system with potential control
M. Bezzarga, Khaled Kefi
Differential Integral Equations 19(9): 1019-1034 (2006). DOI: 10.57262/die/1356050330

Abstract

We are concerned with the uniform positivity preserving property on a domain $D$ of $\mathbb{R}^d$ ($d\geq 3$), for the noncooperative system \begin{equation}\label{sy} \left\{ \begin{array}{cccc} -\Delta u & = & f(.,u)-\mu av & \text{in } D, \\ -\Delta v & = & bu & \text{in }D, \\ \underset{ x \rightarrow \partial_{\infty} D }{\lim }u(x) & = & \underset{ x \rightarrow \partial_{\infty} D}{\lim }v(x) & = 0, \end{array} \right. \end{equation} where $\partial_{\infty}D=\left\{ \begin{array}{ccc} \partial D ,\ \ \mbox{if D is bounded},\\ \partial D\cup \{+\infty\}, \ \ \mbox{if not}. \end{array} \right.$ We give appropriate conditions on $a$, $b$ and $f$ to get the existence and positivity of the solutions with potential control.

Citation

Download Citation

M. Bezzarga. Khaled Kefi. "Positive solution of Laplacian noncooperative system with potential control." Differential Integral Equations 19 (9) 1019 - 1034, 2006. https://doi.org/10.57262/die/1356050330

Information

Published: 2006
First available in Project Euclid: 21 December 2012

zbMATH: 1210.35077
MathSciNet: MR2262094
Digital Object Identifier: 10.57262/die/1356050330

Subjects:
Primary: 35J55
Secondary: 35B05

Rights: Copyright © 2006 Khayyam Publishing, Inc.

Vol.19 • No. 9 • 2006
Back to Top