Open Access
Translator Disclaimer
2005 Steady states for a system describing self-gravitating Fermi-Dirac particles
Robert Stańczy
Differential Integral Equations 18(5): 567-582 (2005).

Abstract

In this paper we obtain existence, nonexistence, and multiplicity results for the Dirichlet boundary-value problem $-\Delta u=f_{\alpha}(u+c)$ in a bounded domain $\omega\subset\mathbb R^d,$ with a nonlocal condition $\int_{\omega}f_{\alpha}(u+c)=M.$ The solutions of this BVP are steady states for some evolution system describing self-gravitating Fermi-Dirac particles.

Citation

Download Citation

Robert Stańczy. "Steady states for a system describing self-gravitating Fermi-Dirac particles." Differential Integral Equations 18 (5) 567 - 582, 2005.

Information

Published: 2005
First available in Project Euclid: 21 December 2012

zbMATH: 1212.35132
MathSciNet: MR2136979

Subjects:
Primary: 35J60
Secondary: 35J25 , 47J05 , 47J30 , 82C70

Rights: Copyright © 2005 Khayyam Publishing, Inc.

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.18 • No. 5 • 2005
Back to Top