2004 Solvability of nonautonomous parabolic variational inequalities in Banach spaces
Matthew Rudd
Differential Integral Equations 17(9-10): 1093-1122 (2004). DOI: 10.57262/die/1356060315

Abstract

We consider nonautonomous parabolic variational inequalities having the strong formulation \begin{align*} \langle { u'(t) }{ v - u(t) } \rangle + \langle { A(t) u(t) }{ v - u(t) }\rangle + \Phi(t, v ) - \Phi(t,u(t)) \geq 0, \\ \forall \, v \in V^{**}, \ a.e. \ t \geq s, \end{align*} where $u(s) = u_{s}$ for some admissible initial datum, $V$ is a separable Banach space with separable dual $V^{*}$, $A(t) : V^{**} \rightarrow V^{*}$ is an appropriate family of monotone operators, and $\Phi(t,\cdot) : V^{**} \rightarrow \mathbb R \cup \{ \infty \}$ is a family of convex, weak* lower-semicontinuous functionals. Well-posedness follows from an explicit construction of the related evolution family $\{ U(t,s) : t \geq s \}$. Illustrative applications are given.

Citation

Download Citation

Matthew Rudd. "Solvability of nonautonomous parabolic variational inequalities in Banach spaces." Differential Integral Equations 17 (9-10) 1093 - 1122, 2004. https://doi.org/10.57262/die/1356060315

Information

Published: 2004
First available in Project Euclid: 21 December 2012

zbMATH: 1150.47044
MathSciNet: MR2082461
Digital Object Identifier: 10.57262/die/1356060315

Subjects:
Primary: 49J40
Secondary: 34G25 , 47J20

Rights: Copyright © 2004 Khayyam Publishing, Inc.

Vol.17 • No. 9-10 • 2004
Back to Top