Abstract
In this paper we study periodic, nonlinear, second-order differential inclusions, driven by the differential operator $$ x\rightarrow (\alpha(x)\|x'\|^{p-2}x')' $$ and involving a maximal monotone term $A$ and a multivalued nonlinearity $F(t,x)$ which satisfies the Hartman condition. We do not assume that $domA$ is all of $\mathbb{R}^{N}$, and so our formulation incorporates variational inequalities. Then we obtain partial generalizations. First, we allow $F$ to depend on $x'$, but for $p=2$ and for the scalar problem ($N=1$). Second, we assume a general multivalued, nonlinear differential operator $x\rightarrow \alpha(x,x')'$; the nonlinearity $F$ depends also on $x'$, but the boundary conditions are Dirichlet. Our methods are based on notions and techniques from multivalued analysis and from the theory of operators of monotone type.
Citation
Evgenia H. Papageorgiou. Nikolaos S. Papageorgiou. "Strongly nonlinear multivalued, periodic problems with maximal monotone terms." Differential Integral Equations 17 (3-4) 443 - 480, 2004. https://doi.org/10.57262/die/1356060440
Information