2003 Unique continuation principles for the Benjamin-Ono equation
Rafael José Iorio Jr.
Differential Integral Equations 16(11): 1281-1291 (2003). DOI: 10.57262/die/1356060510

Abstract

Let $\sigma$ denote the Hilbert transform and $\mu\geq0$. We prove that if $u\in C\left( \left[ 0,T\right] ,H^{2}\left( \mathbb{R}\right) \cap L_{2}^{2}\left( \mathbb{R}\right) \right) $ is a solution of \[ \partial_{t}u+2\sigma\partial_{x}^{2}u+u\partial_{x}u=\mu\partial_{x}^{2}u \] such that there are $t_{0} <t_{1}$ $ <t_{2\text{ }}$satisfying $u\left( t_{j}\right) \in H^{4}\left( \mathbb{R}\right) \cap L_{4}^{2}\left( \mathbb{R}\right) $, $j=0,1,2$, then $u\left( t\right) =0$ for all $t\in\left[ 0,T\right] $.

Citation

Download Citation

Rafael José Iorio Jr.. "Unique continuation principles for the Benjamin-Ono equation." Differential Integral Equations 16 (11) 1281 - 1291, 2003. https://doi.org/10.57262/die/1356060510

Information

Published: 2003
First available in Project Euclid: 21 December 2012

zbMATH: 1075.35552
MathSciNet: MR2016683
Digital Object Identifier: 10.57262/die/1356060510

Subjects:
Primary: 35Q53
Secondary: 35B60 , 76B15

Rights: Copyright © 2003 Khayyam Publishing, Inc.

Vol.16 • No. 11 • 2003
Back to Top