2000 Identification of boundary shape and reflectivity in a wave equation by optimal control techniques
Suzanne Lenhart, Vladimir Protopopescu, Jiongmin Yong
Differential Integral Equations 13(7-9): 941-972 (2000). DOI: 10.57262/die/1356061205

Abstract

We apply optimal control techniques to find approximate solutions to an inverse problem for the acoustic wave equation. The inverse problem (assumed to have a unique solution) is to determine the shape and reflection coefficient of a part of the boundary from partial measurements of the acoustic signal. The sought functions are treated as controls and the goal - quantified by an objective functional - is to drive the model solution close to the experimental data by adjusting these functions. The problem is solved by finding the optimal control pair, which minimizes the objective functional. Then by driving the "cost of the control" to zero one proves that the sequence of optimal controls converges to the solution of the inverse problem.

Citation

Download Citation

Suzanne Lenhart. Vladimir Protopopescu. Jiongmin Yong. "Identification of boundary shape and reflectivity in a wave equation by optimal control techniques." Differential Integral Equations 13 (7-9) 941 - 972, 2000. https://doi.org/10.57262/die/1356061205

Information

Published: 2000
First available in Project Euclid: 21 December 2012

zbMATH: 0974.49013
MathSciNet: MR1775241
Digital Object Identifier: 10.57262/die/1356061205

Subjects:
Primary: 49J20
Secondary: 35R30 , 49K20 , 93B30

Rights: Copyright © 2000 Khayyam Publishing, Inc.

Vol.13 • No. 7-9 • 2000
Back to Top