Abstract
In this paper we empirically evaluate a recently proposed Fast Approximate Discrete Fourier Transform (FADFT) algorithm, FADFT-2, for the first time. FADFT-2 returns approximate Fourier representations for frequency-sparse signals and works by random sampling. Its implemen- tation is benchmarked against two competing methods. The first is the popular exact FFT imple- mentation FFTW Version 3.1. The second is an implementation of FADFT-2’s ancestor, FADFT-1. Experiments verify the theoretical runtimes of both FADFT-1 and FADFT-2. In doing so it is shown that FADFT-2 not only generally outperforms FADFT-1 on all but the sparsest signals, but is also significantly faster than FFTW 3.1 on large sparse signals. Furthermore, it is demonstrated that FADFT-2 is indistinguishable from FADFT-1 in terms of noise tolerance despite FADFT-2’s better execution time.
Citation
M.A. Iwen. A. Gilbert. M. Strauss. "Empirical evaluation of a sub-linear time sparse DFT algorithm." Commun. Math. Sci. 5 (4) 981 - 998, December 2007.
Information