Open Access
2017 Nonlinear Eigenvalue Problem for the p-Laplacian
Najib Tsouli, Omar Chakrone, Omar Darhouche, Mostafa Rahmani
Commun. Math. Anal. 20(1): 69-82 (2017).

Abstract

This article is devoted to the study of the nonlinear eigenvalue problem $$-\Delta_{p} u \quad=\quad \lambda |u|^{p-2}u \;\mbox{in}\; \Omega,\\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu}\quad+\quad\beta |u|^{p-2}u=\lambda |u|^{p-2}u \;\mbox{on}\quad\partial\Omega,$$ where $ν$ denotes the unit exterior normal, $1 \lt p \lt ∞ \,\mathrm {and} ∆_{p}u = div(|∇u|^{p−2}∇u)$ denotes the p-laplacian. $Ω ⊂ \mathbb{R}^{N}$ is a bounded domain with smooth boundary where $N ≥ 2$ and $β \in L^{∞}(∂Ω) \,\mathrm{with}\, β^{−} := \mathrm{inf}_{x∈∂Ω}β(x) > 0$. Using Ljusternik-Schnirelman theory, we prove the existence of a nondecreasing sequence of positive eigenvalues and the first eigenvalue is simple and isolated. Moreover, we will prove that the second eigenvalue coincides with the second variational eigenvalue obtained via the Ljusternik-Schnirelman theory.

Citation

Download Citation

Najib Tsouli. Omar Chakrone. Omar Darhouche. Mostafa Rahmani. "Nonlinear Eigenvalue Problem for the p-Laplacian." Commun. Math. Anal. 20 (1) 69 - 82, 2017.

Information

Published: 2017
First available in Project Euclid: 15 July 2017

zbMATH: 1371.35136
MathSciNet: MR3665390

Subjects:
Primary: 35J60 , 35J65 , 47H11

Keywords: Ljusternik-Schnirelman theory , Nonlinear eigenvalue problem , p-Laplacian , variational methods

Rights: Copyright © 2017 Mathematical Research Publishers

Vol.20 • No. 1 • 2017
Back to Top