Translator Disclaimer
2014 Meixner Polynomials and Representations of the 3D Lorentz Group SO(2,1)
N. M. Atakishiyev, A. M. Jafarova, E. I. Jafarov
Commun. Math. Anal. 17(2): 14-23 (2014).

Abstract

We argue that the Meixner polynomials of a discrete variable are actually “encoded” within appropriate infinite-dimensional irreducible unitary representations of the three-dimensional Lorentz group SO(2,1). Hence discrete series of irreducible unitary representation spaces of the non compact group SO(2,1) can be naturally interpreted as discrete versions of the linear harmonic oscillator in standard non-relativistic quantum mechanics.

Citation

Download Citation

N. M. Atakishiyev. A. M. Jafarova. E. I. Jafarov. "Meixner Polynomials and Representations of the 3D Lorentz Group SO(2,1)." Commun. Math. Anal. 17 (2) 14 - 23, 2014.

Information

Published: 2014
First available in Project Euclid: 18 December 2014

zbMATH: 1323.33010
MathSciNet: MR3292956

Subjects:
Primary: ‎33D45, 39A70, 47B39

Rights: Copyright © 2014 Mathematical Research Publishers

JOURNAL ARTICLE
10 PAGES


SHARE
Vol.17 • No. 2 • 2014
Back to Top