Open Access
2013 Well-Posedness of a Linear Spatio-Temporal Model of the JAK2/STAT5 Signaling Pathway
E. Friedmann, R. Neumann, R. Rannacher
Commun. Math. Anal. 15(2): 76-102 (2013).
Abstract

Cellular geometries can vary significantly, how they influence signaling remains largely unknown. In this article, we describe a new model of the most extensively studied signal transduction pathways, the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway based on a mixed system of linear differential equations (PDEs + ODEs) coupled by Robin boundary conditions. This model was introduced to analyze the influence of the cell shape on the regulatory response to the activated pathway. In this article, we present an analysis of the wellposedness of the resulting system, i.e., the existence of a unique solution, its nonnegativity, boundedness and Lyapunov stability. As byproduct, we show the well-posedness and convergence of a suitable discretization of this model providing the basis for its reliable numerical simulation.

References

1.

Adams, R. A., Fournier, J. J. F., Sobolev spaces, Elsevier, 2003. MR2424078 Adams, R. A., Fournier, J. J. F., Sobolev spaces, Elsevier, 2003. MR2424078

2.

ANSYS ICEM CFD Mesh Generation, URL: http://www.ansys.com/-products/icemcfd.asp. ANSYS ICEM CFD Mesh Generation, URL: http://www.ansys.com/-products/icemcfd.asp.

3.

Bachmann, J., Dynamic Modeling of the JAK2/STAT5 Signal Transduction Pathway to Dissect the Specific Roles of Negative Feedback Regulators, dissertation, University of Heidelberg, 2009. Bachmann, J., Dynamic Modeling of the JAK2/STAT5 Signal Transduction Pathway to Dissect the Specific Roles of Negative Feedback Regulators, dissertation, University of Heidelberg, 2009.

4.

Bermon A., and Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, SIAM Publication, Philadelphia, 1994. MR1298430 Bermon A., and Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, SIAM Publication, Philadelphia, 1994. MR1298430

5.

Bramble J. H., and Hubbard B. E., Approximation of Solutions of Mixed Boundary Value Problems for Poisson's Equation by Finite Differences, J. ACM 12, 114-123, DOI=10.1145/321250.321260 http://doi.acm.org/10.1145/321250.321260, 1965. MR171384 0125.07305 10.1145/321250.321260 Bramble J. H., and Hubbard B. E., Approximation of Solutions of Mixed Boundary Value Problems for Poisson's Equation by Finite Differences, J. ACM 12, 114-123, DOI=10.1145/321250.321260 http://doi.acm.org/10.1145/321250.321260, 1965. MR171384 0125.07305 10.1145/321250.321260

6.

Brenner S. C., and Scott R. L., The Mathematical Theory of Finite Element Methods, Springer, Berlin-Heidelberg-New York, 1994. MR1278258 Brenner S. C., and Scott R. L., The Mathematical Theory of Finite Element Methods, Springer, Berlin-Heidelberg-New York, 1994. MR1278258

7.

Ciarlet P. G., Introduction to Numerical Linear Algebra and Optimization, Cambridge University Press, Cambridge, UK, 1988. MR1015713 Ciarlet P. G., Introduction to Numerical Linear Algebra and Optimization, Cambridge University Press, Cambridge, UK, 1988. MR1015713

8.

Claus J., Friedmann E., Klingmüller U., Rannacher R., and Szekeres T., Spatial aspects in the SMAD signaling pathway, J. Math. Biol., DOI 10.1007/s00285-012-0574-1, 2012. Claus J., Friedmann E., Klingmüller U., Rannacher R., and Szekeres T., Spatial aspects in the SMAD signaling pathway, J. Math. Biol., DOI 10.1007/s00285-012-0574-1, 2012.

9.

Friedmann E., Pfeifer A.C., Neumann R., Klingmüller U. and Rannacher R., Interaction between experiment, modeling and simulation of spatial aspects in the JAK2/STAT5 Signaling pathway, in Model based parameter estimation: theory and applications, Springer Series Contributions in Mathematical and Computational Sciences, 2011. Friedmann E., Pfeifer A.C., Neumann R., Klingmüller U. and Rannacher R., Interaction between experiment, modeling and simulation of spatial aspects in the JAK2/STAT5 Signaling pathway, in Model based parameter estimation: theory and applications, Springer Series Contributions in Mathematical and Computational Sciences, 2011.

10.

GASCOIGNE, High Performance Adaptive Finite Element Toolkit, URL: http://www.numerik.uni-kiel.de/~mabr/gascoigne/. http://www.numerik.uni-kiel.de/~mabr/gascoigne/ GASCOIGNE, High Performance Adaptive Finite Element Toolkit, URL: http://www.numerik.uni-kiel.de/~mabr/gascoigne/. http://www.numerik.uni-kiel.de/~mabr/gascoigne/

11.

Forsythe G. E., and Wasow W. R., Finite-difference Methods for Partial Differential Equations, John Wiley, New York, 1960.  MR130124 Forsythe G. E., and Wasow W. R., Finite-difference Methods for Partial Differential Equations, John Wiley, New York, 1960.  MR130124

12.

Hackbusch W., Elliptic Differential Equations: Theory and Numerical Treatment, Springer, Berlin, 1992. MR1197118 Hackbusch W., Elliptic Differential Equations: Theory and Numerical Treatment, Springer, Berlin, 1992. MR1197118

13.

Hairer E., Norsett S. P., and Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, Berlin-Heidelkberg-New York, 1987. MR868663 Hairer E., Norsett S. P., and Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, Berlin-Heidelkberg-New York, 1987. MR868663

14.

Jost J., Partial Differential Equations, Springer, 2007. MR2302683 Jost J., Partial Differential Equations, Springer, 2007. MR2302683

15.

Lady$\check{z}$enskaja O. A., Solonnikov V. A., and Ural$\acute{c}$eva N. N., Linear and Quasilinears Equations of Parabolic Type, American Mathematical Society, 1968. MR241822 Lady$\check{z}$enskaja O. A., Solonnikov V. A., and Ural$\acute{c}$eva N. N., Linear and Quasilinears Equations of Parabolic Type, American Mathematical Society, 1968. MR241822

16.

Liebermann G. M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd, 1996. MR1465184 Liebermann G. M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd, 1996. MR1465184

17.

Maiwald T., and Timmer J., Dynamical Modeling and Multi-experiment Fitting with PottersWheel, Bioinformatics 24, 2037-43, 2008. Maiwald T., and Timmer J., Dynamical Modeling and Multi-experiment Fitting with PottersWheel, Bioinformatics 24, 2037-43, 2008.

18.

Neumann R., Räumliche Aspekte in der Signaltransduktion, Diplomarbeit Ruprecht-Karls- Universität Heidelberg, 2009. Neumann R., Räumliche Aspekte in der Signaltransduktion, Diplomarbeit Ruprecht-Karls- Universität Heidelberg, 2009.

19.

Pfeifer A.C, Kaschek D., Bachmann J., Klingmüller U., and Timmer J., Model-based extension of high-throughput to high-content data, 2008. Pfeifer A.C, Kaschek D., Bachmann J., Klingmüller U., and Timmer J., Model-based extension of high-throughput to high-content data, 2008.

20.

Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, and Klingmüller U., Computational processing and error reduction strategies for standardized quantitative data in biological networks, FEBS J. 272(24):6400-11, 2005. Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, and Klingmüller U., Computational processing and error reduction strategies for standardized quantitative data in biological networks, FEBS J. 272(24):6400-11, 2005.

21.

Schilling M., Pfeifer A.C., Bohl S., and Klingmüller U., Standardizing experimental protocols, Curr Opin Biotechnol., 2008. Schilling M., Pfeifer A.C., Bohl S., and Klingmüller U., Standardizing experimental protocols, Curr Opin Biotechnol., 2008.

22.

Shortley G. H., Weller R., Numerical Solution of Laplace's Equation, J. Appl. Phys. 9, 334–348, 1938. Shortley G. H., Weller R., Numerical Solution of Laplace's Equation, J. Appl. Phys. 9, 334–348, 1938.

23.

Swameye I., Müller T.G., Timmer J., Sandra O., and Klingmüller. U., Identification of nucleocytoplasmatic cycling as a remote sensor in cellular signaling by databased modeling, PNAS Proceedings of the National Academy of Sciences, 100(3):1028–1033, 2003. Swameye I., Müller T.G., Timmer J., Sandra O., and Klingmüller. U., Identification of nucleocytoplasmatic cycling as a remote sensor in cellular signaling by databased modeling, PNAS Proceedings of the National Academy of Sciences, 100(3):1028–1033, 2003.

24.

Timmer J., Müller T.G., Swameye I., Sandra O., and Klingmüller U., Modeling the nonlinear dynamics of cellular signal transduction, International Journal of Bifurcation and Chaos, 14, No. 6, 2069-2079, 2004. MR2076183 1065.92018 10.1142/S0218127404010461 Timmer J., Müller T.G., Swameye I., Sandra O., and Klingmüller U., Modeling the nonlinear dynamics of cellular signal transduction, International Journal of Bifurcation and Chaos, 14, No. 6, 2069-2079, 2004. MR2076183 1065.92018 10.1142/S0218127404010461

25.

Varga R. S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.  MR158502 Varga R. S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.  MR158502

26.

Wloka J., Partial Differential Equations, Cambridge University Press, 1987. MR895589 0623.35006 Wloka J., Partial Differential Equations, Cambridge University Press, 1987. MR895589 0623.35006
Copyright © 2013 Mathematical Research Publishers
E. Friedmann, R. Neumann, and R. Rannacher "Well-Posedness of a Linear Spatio-Temporal Model of the JAK2/STAT5 Signaling Pathway," Communications in Mathematical Analysis 15(2), 76-102, (2013). https://doi.org/
Published: 2013
Vol.15 • No. 2 • 2013
Back to Top