Open Access
2013 On Analysis and Numerical Simulations of a Chemotaxis Model of Aggregation of Microglia in Alzheimer's Disease
A. Wacher, R. Willie
Commun. Math. Anal. 15(2): 117-150 (2013).
Abstract

In this paper, we study the wellposedness in scales of Hilbert spaces $E^{\alpha},\alpha\in\mathbb{R}$ defined by the noncoupled system partial differential operator of a chemotaxis model of aggregation of microglia in Alzheimer's disease for a perturbated analytic semigroup, which decays exponentially in the large time asymptotic dynamics of the problem to a finite dimensional set $K\subset \mathbb{R}^{3}$ of the spatial average solutions. Uniform bounds in $\Omega\times (0,T)$ of solutions and gradient solutions to the system of equations are proved. Thus via a bootstrap argument solutions to the problem are shown to be classical solutions. Furthermore, under natural conditions on the coupled elliptic system quasilinear differential operator, we prove the existence of a fundamental solution or evolution operator for the model equations in cited function spaces. In conclusion numerical simulation results are provided.

References

1.

R. Adams, \em Sobolev spaces. Academic Press. New York 1975. MR450957R. Adams, \em Sobolev spaces. Academic Press. New York 1975. MR450957

2.

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In H.Schmeisser-H. Triebel (eds.) Function spaces, Differential operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart -Leipzig 1993, pp. 9-126. MR1242579 0810.35037H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In H.Schmeisser-H. Triebel (eds.) Function spaces, Differential operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart -Leipzig 1993, pp. 9-126. MR1242579 0810.35037

3.

N. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations.Comm. Partial Differential Equations. 4. pp.827-868. 1976. MR537465 0421.35009 10.1080/03605307908820113N. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations.Comm. Partial Differential Equations. 4. pp.827-868. 1976. MR537465 0421.35009 10.1080/03605307908820113

4.

R. Bose, & M. Joshi,Some topics in nonlinear functional analysis. Wiley Eastern Ltd. 1985.  MR806351 0596.47038R. Bose, & M. Joshi,Some topics in nonlinear functional analysis. Wiley Eastern Ltd. 1985.  MR806351 0596.47038

5.

H. Brezis, Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer New York 2011. MR2759829 1220.46002H. Brezis, Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer New York 2011. MR2759829 1220.46002

6.

D. Daners, & P. Koch Medina, Abstract evolution equations, periodic problems and applications. Pitman Res. Notes Math. Ser. 279. 1992. MR1204883 0789.35001 D. Daners, & P. Koch Medina, Abstract evolution equations, periodic problems and applications. Pitman Res. Notes Math. Ser. 279. 1992. MR1204883 0789.35001

7.

l. Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems. J. Differential Equations. 147. pp. 1-29, 1998. MR1632736 0921.35074 10.1006/jdeq.1998.3435l. Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems. J. Differential Equations. 147. pp. 1-29, 1998. MR1632736 0921.35074 10.1006/jdeq.1998.3435

8.

J. Dyson, et al, Global existence and boundedness of solutions to a model of chemotaxis. \em Math. Model.Nat.Phenom. Vol. 3. # 7, pp. 17-35, 2008. MR2460250 10.1051/mmnp:2008039J. Dyson, et al, Global existence and boundedness of solutions to a model of chemotaxis. \em Math. Model.Nat.Phenom. Vol. 3. # 7, pp. 17-35, 2008. MR2460250 10.1051/mmnp:2008039

9.

D. Henry, Geometric theory of semilinear parabolic problems. Lecture notes in mathematics 840. Springer-Verlag. New York 1981. MR610244 D. Henry, Geometric theory of semilinear parabolic problems. Lecture notes in mathematics 840. Springer-Verlag. New York 1981. MR610244

10.

D. Horstmann, & M. Winkler, Boundedness vs blow up in a chemotaxis system. \em J. Differential Equations. 215(1), pp. 52-107, 2005. MR2146345 1085.35065 10.1016/j.jde.2004.10.022D. Horstmann, & M. Winkler, Boundedness vs blow up in a chemotaxis system. \em J. Differential Equations. 215(1), pp. 52-107, 2005. MR2146345 1085.35065 10.1016/j.jde.2004.10.022

11.

E. Feireisl, et al, On a nonlinear diffusion system with resource-consumer interaction. \em Hiroshima Math. J 33, pp. 253-295, 2003. MR1997697 1053.35060 euclid.hmj/1150997949 E. Feireisl, et al, On a nonlinear diffusion system with resource-consumer interaction. \em Hiroshima Math. J 33, pp. 253-295, 2003. MR1997697 1053.35060 euclid.hmj/1150997949

12.

A. Friedmann, \em Partial differential equations. New York 1969. MR445088A. Friedmann, \em Partial differential equations. New York 1969. MR445088

13.

S. Kaja, P. Garg, & P. Koulen, Novel mouse model for sporadic Alzheimer's Disease. \em Neuroscience Meeting Planner, Washington, DC., Soc. Neuroscience. Conference Program # 352.22. 2011, 2011. S. Kaja, P. Garg, & P. Koulen, Novel mouse model for sporadic Alzheimer's Disease. \em Neuroscience Meeting Planner, Washington, DC., Soc. Neuroscience. Conference Program # 352.22. 2011, 2011.

14.

S. Kesavan, Topics in functional analysis and applications. Wiley Eastern Ltd. 1989.  MR990018 0666.46001S. Kesavan, Topics in functional analysis and applications. Wiley Eastern Ltd. 1989.  MR990018 0666.46001

15.

O. Ladyzhenskaya, & N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press. London 1968. MR244627O. Ladyzhenskaya, & N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press. London 1968. MR244627

16.

A. Lunardi, \em Analytic semigroups and optimal regularity in parabolic problems. Prog. Nonlinear Differential Equations & Appl. Birkhäuser 1995.  MR1329547A. Lunardi, \em Analytic semigroups and optimal regularity in parabolic problems. Prog. Nonlinear Differential Equations & Appl. Birkhäuser 1995.  MR1329547

17.

C. Morales-Rodrigo, \em Analysis of some systems of partial differential equations describing cellular movement. PhD. Thesis Unversity of Warsaw, 2008. C. Morales-Rodrigo, \em Analysis of some systems of partial differential equations describing cellular movement. PhD. Thesis Unversity of Warsaw, 2008.

18.

J.D. Murray, \em Mathematical biology. II: Spatial models and biomedical applications. $3^{rd}$ Edition. Springer-Verlag. 2003. MR1952568J.D. Murray, \em Mathematical biology. II: Spatial models and biomedical applications. $3^{rd}$ Edition. Springer-Verlag. 2003. MR1952568

19.

M. Noda, & A. Suzumara, Sweepers in the CNS: Microglial migration and phagocytosis in the Alzheimer disease pathogenesis.Inter. J. A.D. Vol. 2012, Article I.D. 891087, 11 pages. Doi:10.1155/2012/891087.M. Noda, & A. Suzumara, Sweepers in the CNS: Microglial migration and phagocytosis in the Alzheimer disease pathogenesis.Inter. J. A.D. Vol. 2012, Article I.D. 891087, 11 pages. Doi:10.1155/2012/891087.

20.

K. Osaki, et al, Exponential attractor for a chemotaxis -growth system of equations. Nonl. Anal. 51, pp. 119-144, 2002. MR1915744 K. Osaki, et al, Exponential attractor for a chemotaxis -growth system of equations. Nonl. Anal. 51, pp. 119-144, 2002. MR1915744

21.

G.R. Sell, & Y. You, Dynamics of evolutionary equations. Appl. Math. Sc. 143. Springer-Verlag. 2002. MR1873467 1254.37002G.R. Sell, & Y. You, Dynamics of evolutionary equations. Appl. Math. Sc. 143. Springer-Verlag. 2002. MR1873467 1254.37002

22.

R. E. Showalter, \em Monotone operators in Banach space and nonlinear partial differential equations. Math. Surveys & Monographs. Vol. 49. AMS. 1997. MR1422252 0870.35004R. E. Showalter, \em Monotone operators in Banach space and nonlinear partial differential equations. Math. Surveys & Monographs. Vol. 49. AMS. 1997. MR1422252 0870.35004

23.

A. Pazy,Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, Berlin, 1983. MR710486 0516.47023A. Pazy,Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, Berlin, 1983. MR710486 0516.47023

24.

W. Pogorzelski, Étude de la solution fondamental de l'équation parabolique.Ricerche Mat. 5, pp. 25-57,1957. MR79198W. Pogorzelski, Étude de la solution fondamental de l'équation parabolique.Ricerche Mat. 5, pp. 25-57,1957. MR79198

25.

K. Post, A nonlinear parabolic system modeling chemotaxis with sensitivity functions. \em Humboldt-Universität zu Berlin. August 1999 Preprint. K. Post, A nonlinear parabolic system modeling chemotaxis with sensitivity functions. \em Humboldt-Universität zu Berlin. August 1999 Preprint.

26.

A. Rodríguez Bernal, Existence, uniqueness and regularity of solutions of evolution equations in extended scales of Hilbert spaces. CDSNS Gatech Report Series, 1991.A. Rodríguez Bernal, Existence, uniqueness and regularity of solutions of evolution equations in extended scales of Hilbert spaces. CDSNS Gatech Report Series, 1991.

27.

–––––––––––, Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Pre -publications. Series MA-UCM 2008-08. University Complutense of Madrid. 2008.–––––––––––, Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Pre -publications. Series MA-UCM 2008-08. University Complutense of Madrid. 2008.

28.

–––––––––––, Perturbation of analytic semigroups in scales of Banach spaces and applications to parabolic equations with low regularity data. \em S$\vec{e}$MA. J. # 53, pp. 3-54, (2011).–––––––––––, Perturbation of analytic semigroups in scales of Banach spaces and applications to parabolic equations with low regularity data. \em S$\vec{e}$MA. J. # 53, pp. 3-54, (2011).

29.

A. Rodriguez Bernal, & R. Willie, Singular large diffusivity and spatial homogenization in non homogeneous linear parabolic problem. \em DCDS. Series B. Vol 5, # 2, pp. 385-410,2005. MR2129385 10.3934/dcdsb.2005.5.385 1071.35018A. Rodriguez Bernal, & R. Willie, Singular large diffusivity and spatial homogenization in non homogeneous linear parabolic problem. \em DCDS. Series B. Vol 5, # 2, pp. 385-410,2005. MR2129385 10.3934/dcdsb.2005.5.385 1071.35018

30.

J. Rogers, et al, Neuroinflammation in Alzheimer's disease and Parkison's disease are microglia pathogenic in either disorder. \em Inter. Review of Neurobiology, Vol. 82, pp. 235-246, 2007.J. Rogers, et al, Neuroinflammation in Alzheimer's disease and Parkison's disease are microglia pathogenic in either disorder. \em Inter. Review of Neurobiology, Vol. 82, pp. 235-246, 2007.

31.

–––––––––––––, Microglial chemotaxis, activation and phagocytosis of amyloid $\beta-$ peptide as lined phenomena in Alzeheimer's disease. Neurochemistry International 39, pp. 333-340, 2001.–––––––––––––, Microglial chemotaxis, activation and phagocytosis of amyloid $\beta-$ peptide as lined phenomena in Alzeheimer's disease. Neurochemistry International 39, pp. 333-340, 2001.

32.

J.K. Ryu, el al, Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J. Neuroscience, January 7, 2009, 29(1), pp. 3-13.J.K. Ryu, el al, Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J. Neuroscience, January 7, 2009, 29(1), pp. 3-13.

33.

L.E. Payne, & B. Straughan, Decay for a Keller-Segel chemotaxis model.Stud. Appl. Maths. 123, pp. 337-360, 2009.  MR2561080 1180.35529 10.1111/j.1467-9590.2009.00457.xL.E. Payne, & B. Straughan, Decay for a Keller-Segel chemotaxis model.Stud. Appl. Maths. 123, pp. 337-360, 2009.  MR2561080 1180.35529 10.1111/j.1467-9590.2009.00457.x

34.

R.A. Quinlan, & B. Straughan, Decay bounds in a model for aggregation of microglia: application to Alzheimer's disease senile plaques. Proc. R. Soc. A. 461, pp. 2887-2897, 2005. MR2165516 1186.92025 10.1098/rspa.2005.1483R.A. Quinlan, & B. Straughan, Decay bounds in a model for aggregation of microglia: application to Alzheimer's disease senile plaques. Proc. R. Soc. A. 461, pp. 2887-2897, 2005. MR2165516 1186.92025 10.1098/rspa.2005.1483

35.

Y. Tao, & Z.A. Wang, Competing effects of attraction vs repulsion in chemotaxis. Math. Models & Methods in Applied Sciences. DOI: 10.1142/S0218202512500443. pp. 1-36, 2013. MR2997466 10.1142/S0218202512500443 Y. Tao, & Z.A. Wang, Competing effects of attraction vs repulsion in chemotaxis. Math. Models & Methods in Applied Sciences. DOI: 10.1142/S0218202512500443. pp. 1-36, 2013. MR2997466 10.1142/S0218202512500443

36.

A. Wacher, & I. Sobey, String Gradient Weighted Moving Finite Elements in Multiple Dimensions with Applications in Two Dimensions. SIAM. J. Scientific Computing 29(2), pp. 459-480, 2007. MR2306254 1134.76034 10.1137/040619557 A. Wacher, & I. Sobey, String Gradient Weighted Moving Finite Elements in Multiple Dimensions with Applications in Two Dimensions. SIAM. J. Scientific Computing 29(2), pp. 459-480, 2007. MR2306254 1134.76034 10.1137/040619557

37.

A. Wacher, A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, for solutions of Partial Differential Equations. To appear: \em Central European J. Maths. Manuscript ID. CEJM-D-12-00062. 2012. MR3015391 1263.65097 10.2478/s11533-012-0161-0A. Wacher, A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, for solutions of Partial Differential Equations. To appear: \em Central European J. Maths. Manuscript ID. CEJM-D-12-00062. 2012. MR3015391 1263.65097 10.2478/s11533-012-0161-0

38.

A. Wacher, & S. Kaja, Aggregation of microglia in 2D with string gradient weighted moving finite elements. To appear: Math. Methods in the Applied sciences. Manuscript ID. MMA-12-4160. 2012. A. Wacher, & S. Kaja, Aggregation of microglia in 2D with string gradient weighted moving finite elements. To appear: Math. Methods in the Applied sciences. Manuscript ID. MMA-12-4160. 2012.

39.

R. Willie, \em Reaction and diffusion equations with large diffusivity. University Complutense of Madrid. DSc. Maths. Thesis 2005. R. Willie, \em Reaction and diffusion equations with large diffusivity. University Complutense of Madrid. DSc. Maths. Thesis 2005.

40.

–––––––––––-, Nesting inertial manifolds for reaction and diffusion equations with large diffusivity. \em Nonlinear Analysis: TMA 67, No.1, pp. 70-93, 2007.  MR2313880–––––––––––-, Nesting inertial manifolds for reaction and diffusion equations with large diffusivity. \em Nonlinear Analysis: TMA 67, No.1, pp. 70-93, 2007.  MR2313880

41.

M. Winkler, Aggregation vs. global diffusive behaviour in higher dimensionsional Keller-Segel Model. \em J. Differential Equations. 248, pp. 2889-2905, 2010.  MR2644137 1190.92004 10.1016/j.jde.2010.02.008M. Winkler, Aggregation vs. global diffusive behaviour in higher dimensionsional Keller-Segel Model. \em J. Differential Equations. 248, pp. 2889-2905, 2010.  MR2644137 1190.92004 10.1016/j.jde.2010.02.008

42.

–––––––––––––, Boundedness in the higher -dimensional parabolic-parabolic chemotaxis system with logistic source. \em Commun. Partial Differential Equations. Eqns. 35, pp. 1516-1537, 2010. MR2754053 05799499 10.1080/03605300903473426–––––––––––––, Boundedness in the higher -dimensional parabolic-parabolic chemotaxis system with logistic source. \em Commun. Partial Differential Equations. Eqns. 35, pp. 1516-1537, 2010. MR2754053 05799499 10.1080/03605300903473426

43.

––––––––––––, Absence of collapse in a parabolic chemotaxis system with dependent sensitivity. Math. Nachr. 283. No. 11, pp. 1664-1673, 2010. MR2759803 1205.35037 10.1002/mana.200810838––––––––––––, Absence of collapse in a parabolic chemotaxis system with dependent sensitivity. Math. Nachr. 283. No. 11, pp. 1664-1673, 2010. MR2759803 1205.35037 10.1002/mana.200810838

44.

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis. Math. Japan 45, pp. 241-265, 1997. \endbibliography  MR1441498 0910.92007A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis. Math. Japan 45, pp. 241-265, 1997. \endbibliography  MR1441498 0910.92007

45.

S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\R)$. Trans. Amer. Math. Soc. 315 (1989), pp 69-87.  MR1008470 0686.42018 S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\R)$. Trans. Amer. Math. Soc. 315 (1989), pp 69-87.  MR1008470 0686.42018

46.

Y. Meyer Ondelettes et opérateurs I, Hermann, Paris 1990, 315 (1990), pp 69-87.  MR1085487 Y. Meyer Ondelettes et opérateurs I, Hermann, Paris 1990, 315 (1990), pp 69-87.  MR1085487

47.

J. Mielniczuk, Some asymptotic properties of kernel estimators of a density function in case of censored data. Ann. Statist. 1 (1986), pp 766-773.  MR840530 0603.62047 10.1214/aos/1176349954 euclid.aos/1176349954 J. Mielniczuk, Some asymptotic properties of kernel estimators of a density function in case of censored data. Ann. Statist. 1 (1986), pp 766-773.  MR840530 0603.62047 10.1214/aos/1176349954 euclid.aos/1176349954

48.

H. G. Müler and L. L. Wang, Hazard rate estimation under random censoring varying kernels and bandwidths. Biometrics. 50 (1994), pp 61-76.  MR1279435 10.2307/2533197 0824.62097 H. G. Müler and L. L. Wang, Hazard rate estimation under random censoring varying kernels and bandwidths. Biometrics. 50 (1994), pp 61-76.  MR1279435 10.2307/2533197 0824.62097

49.

W. Stute, A law of the iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982b), pp 414-422.  MR647513 0493.62040 10.1214/aop/1176993866 euclid.aop/1176993866 W. Stute, A law of the iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982b), pp 414-422.  MR647513 0493.62040 10.1214/aop/1176993866 euclid.aop/1176993866

50.

M. A. Tanner and W. H. Wong, The estimation of the hazard function from randomly censored data by the kernel method. Ann. Statist. 11 (1983), pp 983-993.  MR707949 0546.62017 10.1214/aos/1176346265 euclid.aos/1176346265 M. A. Tanner and W. H. Wong, The estimation of the hazard function from randomly censored data by the kernel method. Ann. Statist. 11 (1983), pp 983-993.  MR707949 0546.62017 10.1214/aos/1176346265 euclid.aos/1176346265

51.

G. S. Watson and M. R. Leadbetter, Hazard analysis I. Biometrika 51 (1964a),pp 175-184.  MR184335 0128.13503 G. S. Watson and M. R. Leadbetter, Hazard analysis I. Biometrika 51 (1964a),pp 175-184.  MR184335 0128.13503

52.

G. S. Watson and M. R. Leadbetter, Hazard analysis II. Sankhyà, Ser. A 26 (1964b), pp 101-116.  MR184336 G. S. Watson and M. R. Leadbetter, Hazard analysis II. Sankhyà, Ser. A 26 (1964b), pp 101-116.  MR184336
Copyright © 2013 Mathematical Research Publishers
A. Wacher and R. Willie "On Analysis and Numerical Simulations of a Chemotaxis Model of Aggregation of Microglia in Alzheimer's Disease," Communications in Mathematical Analysis 15(2), 117-150, (2013). https://doi.org/
Published: 2013
Vol.15 • No. 2 • 2013
Back to Top