Open Access
2012 A Class of Marcinkiewicz Type Integral Operators
A. Al-Salman
Commun. Math. Anal. 13(2): 56-81 (2012).

Abstract

We introduce a class of integral operators related to parametric Marcinkiewicz operators. We present a multiplier formula characterizing the $ L^{2}$ boundedness of such class of operators. Also, we prove $\mathcal{L} _{-\beta}^{p}$ (inhomogeneous Sobolev space)$\rightarrow L^{p}$ estimates provided that the kernels are in $L(\log L)(\mathbf{S}^{n-1})$. In fact, we show that the global parts of the introduced operators are bounded on the Lebesgue spaces $L^{p}(1\lt p \lt \infty )$ while the local parts are bounded on certain Sobolev spaces $\mathcal{L}_{-\beta }^{p}$.

Citation

Download Citation

A. Al-Salman. "A Class of Marcinkiewicz Type Integral Operators." Commun. Math. Anal. 13 (2) 56 - 81, 2012.

Information

Published: 2012
First available in Project Euclid: 9 October 2012

zbMATH: 1279.42010
MathSciNet: MR2998355

Subjects:
Primary: 42B20
Secondary: 42B15 , 42B25

Keywords: Bessel functions , Fourier transform , Marcinkiewicz integrals , Rough integral operators , Sobolev Spaces , Triebel-Lizorkin space

Rights: Copyright © 2012 Mathematical Research Publishers

Vol.13 • No. 2 • 2012
Back to Top