Translator Disclaimer
2009 Bayesian Models and Gibbs Sampling Strategies for Local Graph Alignment and Motif Identification in Stochastic Biological Networks
Rui Jiang, Ting Chen, Fengzhu Sun
Commun. Inf. Syst. 9(4): 347-370 (2009).

Abstract

With increasing amounts of interaction data collected by high-throughput techniques, understanding the structure and dynamics of biological networks becomes one of the central tasks in post-genomic molecular biology. Recent studies have shown that many biological networks contain a small set of "network motifs," which are suggested to be the basic cellular information-processing units in these networks. Nevertheless, most biological networks have stochastic nature, due to the intrinsic uncertainties of biological interactions and/or experimental noises accompanying the high- throughput data. The building blocks in these networks thus also have stochastic properties. In this paper, we study the problem of identifying stochastic network motifs that are derived from families of mutually similar but not necessarily identical patterns of interactions. Motivated by existing methods for detecting sequence motifs in biopolymer sequences, we establish Bayesian models for stochastic biological networks and develop a group of Gibbs sampling strategies for finding stochastic network motifs. The methods are applied to several available transcriptional regulatory networks and protein-protein interaction networks, and several stochastic network motifs are successfully identified.

Citation

Download Citation

Rui Jiang. Ting Chen. Fengzhu Sun. "Bayesian Models and Gibbs Sampling Strategies for Local Graph Alignment and Motif Identification in Stochastic Biological Networks." Commun. Inf. Syst. 9 (4) 347 - 370, 2009.

Information

Published: 2009
First available in Project Euclid: 4 March 2010

zbMATH: 1185.92053
MathSciNet: MR2608063

Rights: Copyright © 2009 International Press of Boston

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.9 • No. 4 • 2009
Back to Top