Translator Disclaimer
2008 Lower Bounded Control-Lyapunov Functions
Ronald Hirschorn
Commun. Inf. Syst. 8(4): 399-412 (2008).


The well known Brockett condition - a topological obstruction to the existence of smooth stabilizing feedback laws - has engendered a large body of work on discontinuous feedback stabilization. The purpose of this paper is to introduce a class of control-Lyapunov function from which it is possible to specify a (possibly discontinuous) stabilizing feedback law. For control-affine systems with unbounded controls Sontag has described a Lyapunov pair which gives rise to an explicit stabilizing feedback law smooth away from the origin - Sontag’s “universal construction” of Artstein’s Theorem. In this work we introduce the more general “lower bounded control-Lyapunov function” and a “universal formula” for nonaffine systems. Our “universal formula” is a static state feedback which is measurable and locally bounded but possibly discontinuous. Thus, for the corresponding closed loop system, the classical notion of solution need not apply. To deal with this situation we use the generalized solution due to Filippov.


Download Citation

Ronald Hirschorn. "Lower Bounded Control-Lyapunov Functions." Commun. Inf. Syst. 8 (4) 399 - 412, 2008.


Published: 2008
First available in Project Euclid: 6 May 2009

zbMATH: 1168.93018
MathSciNet: MR2495747

Rights: Copyright © 2008 International Press of Boston


Vol.8 • No. 4 • 2008
Back to Top