October 2024 Higher order differential subordinations for certain starlike functions
S. Sivaprasad Kumar, Neha Verma
Bull. Belg. Math. Soc. Simon Stevin 31(3): 384-405 (October 2024). DOI: 10.36045/j.bbms.240311

Abstract

We employ a novel second and third order differential subordination technique to establish the sufficient conditions for functions to belong to the classes $\mathcal{S}^*_s$ and $\mathcal{S}^*_{\rho}$, where $\mathcal{S}^*_s$ is the class of all normalized analytic functions $f$ satisfying $ zf'(z)/f(z)\prec 1+\sin z$ and $\mathcal{S}^*_{\rho}$ is the class of all normalized analytic functions $f$ satisfying $ zf'(z)/f(z)\prec 1+\sinh^{-1} z$.

Citation

Download Citation

S. Sivaprasad Kumar. Neha Verma. "Higher order differential subordinations for certain starlike functions." Bull. Belg. Math. Soc. Simon Stevin 31 (3) 384 - 405, October 2024. https://doi.org/10.36045/j.bbms.240311

Information

Published: October 2024
First available in Project Euclid: 19 October 2024

Digital Object Identifier: 10.36045/j.bbms.240311

Subjects:
Primary: 30C45
Secondary: 30C80

Keywords: petal-shaped domain , sine function , ‎starlike function , Subordination

Rights: Copyright © 2024 The Belgian Mathematical Society

Vol.31 • No. 3 • october 2024
Back to Top