july 2024 Transposed Poisson structures on loop Heisenberg-Virasoro Lie algebra
Yang Yang, Xiaomin Tang
Bull. Belg. Math. Soc. Simon Stevin 31(2): 238-249 (july 2024). DOI: 10.36045/j.bbms.231222

Abstract

We prove that the loop Heisenberg-Virasoro Lie algebra possesses non-trivial $\frac{1}{2}$-derivations, but it does not admit any non-trivial transposed Poisson algebra structures. Furthermore, we demonstrate that this algebra has a non-trivial Hom-Lie algebra structure.

Citation

Download Citation

Yang Yang. Xiaomin Tang. "Transposed Poisson structures on loop Heisenberg-Virasoro Lie algebra." Bull. Belg. Math. Soc. Simon Stevin 31 (2) 238 - 249, july 2024. https://doi.org/10.36045/j.bbms.231222

Information

Published: july 2024
First available in Project Euclid: 8 July 2024

Digital Object Identifier: 10.36045/j.bbms.231222

Subjects:
Primary: 17A30 , 17B40 , 17B63

Keywords: $\frac 12$-derivation , Loop Heisenberg-Virasoro Lie algebra , transposed Poisson algebra

Rights: Copyright © 2024 The Belgian Mathematical Society

Vol.31 • No. 2 • july 2024
Back to Top