april 2024 Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
Chunxu Xu
Bull. Belg. Math. Soc. Simon Stevin 31(1): 123-138 (april 2024). DOI: 10.36045/j.bbms.240113

Abstract

Let $f$ and $g$ be functions in Fock-Sobolev spaces $F_{-\alpha}^2$ of negative orders. In this paper we give a complete characterization of the boundedness and compactness of the mixed product $H_{\overline{f}}T_{\overline{g}}$ from $F_{-\alpha}^2$ to $L^2(\mathbb{C},d\widehat{\mu}_{-\alpha})$.

Citation

Download Citation

Chunxu Xu. "Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders." Bull. Belg. Math. Soc. Simon Stevin 31 (1) 123 - 138, april 2024. https://doi.org/10.36045/j.bbms.240113

Information

Published: april 2024
First available in Project Euclid: 13 May 2024

Digital Object Identifier: 10.36045/j.bbms.240113

Subjects:
Primary: 47B32
Secondary: 47B35

Keywords: Fock-Sobolev space , Hankel operator , Toeplitz operator

Rights: Copyright © 2024 The Belgian Mathematical Society

Vol.31 • No. 1 • april 2024
Back to Top