november 2019 Decidability, Arithmetic Subsequences and Eigenvalues of Morphic Subshifts
Fabien Durand, Valérie Goyheneche
Bull. Belg. Math. Soc. Simon Stevin 26(4): 591-618 (november 2019). DOI: 10.36045/bbms/1576206359

Abstract

We prove decidability results on the existence of constant subsequences of uniformly recurrent morphic sequences along arithmetic progressions. We use spectral properties of the subshifts they generate to give a first algorithm deciding whether, given $p\in \mathbb{N}$, there exists such a constant subsequence along an arithmetic progression of common difference $p$. In the special case of uniformly recurrent automatic sequences we explicitly describe the sets of such $p$ by means of automata.

Citation

Download Citation

Fabien Durand. Valérie Goyheneche. "Decidability, Arithmetic Subsequences and Eigenvalues of Morphic Subshifts." Bull. Belg. Math. Soc. Simon Stevin 26 (4) 591 - 618, november 2019. https://doi.org/10.36045/bbms/1576206359

Information

Published: november 2019
First available in Project Euclid: 13 December 2019

zbMATH: 07167746
MathSciNet: MR4042403
Digital Object Identifier: 10.36045/bbms/1576206359

Subjects:
Primary: 37B10 , 54H20‎ , 68Q45 , 68R15

Keywords: constant arithmetic subsequence , eigenvalue , morphic , subshift

Rights: Copyright © 2019 The Belgian Mathematical Society

Vol.26 • No. 4 • november 2019
Back to Top