Open Access
march 2019 Dissipative property for non local evolution equations
Severino H. da Silva, Antonio R. G. Garcia, Bruna E. P. Lucena
Bull. Belg. Math. Soc. Simon Stevin 26(1): 91-117 (march 2019). DOI: 10.36045/bbms/1553047231

Abstract

In this work we consider the non local evolution problem \[ \begin{cases} \partial_t u(x,t)=-u(x,t)+g(\beta K(f\circ u)(x,t)+\beta h), ~x \in\Omega, ~t\in[0,\infty[;\\ u(x,t)=0, ~x\in\mathbb{R}^N\setminus\Omega, ~t\in[0,\infty[;\\ u(x,0)=u_0(x),~x\in\mathbb{R}^N, \end{cases} \] where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N; ~g,f: \mathbb{R}\to\mathbb{R}$ satisfying\linebreak certain growing condition and $K$ is an integral operator with symmetric kernel, $ Kv(x)=\int_{\mathbb{R}^{N}}J(x,y)v(y)dy.$ We prove that Cauchy problem above is well posed, the solutions are smooth with respect to initial conditions, and we show the existence of a global attractor. Furthermore, we exhibit a Lyapunov's functional, concluding that the flow generated by this equation has the gradient property.

Citation

Download Citation

Severino H. da Silva. Antonio R. G. Garcia. Bruna E. P. Lucena. "Dissipative property for non local evolution equations." Bull. Belg. Math. Soc. Simon Stevin 26 (1) 91 - 117, march 2019. https://doi.org/10.36045/bbms/1553047231

Information

Published: march 2019
First available in Project Euclid: 20 March 2019

zbMATH: 07060318
MathSciNet: MR3934083
Digital Object Identifier: 10.36045/bbms/1553047231

Subjects:
Primary: 37B25 , 45J05 , 45M05

Keywords: global attractor , Lyapunov's functional , Non local equation , Smoothness orbit , well-posedness

Rights: Copyright © 2019 The Belgian Mathematical Society

Vol.26 • No. 1 • march 2019
Back to Top