Translator Disclaimer
april 2017 Stability constants for weighted composition operators on $L^p(\Sigma)$
M. R. Jabbarzadeh, M. Jafari Bakhshkandi
Bull. Belg. Math. Soc. Simon Stevin 24(2): 271-281 (april 2017). DOI: 10.36045/bbms/1503453710

Abstract

In this note we give an explicit formula for the Moore-Penrose inverse $W^{\dag}$ of a weighted composition operator $W$ on $L^2(\Sigma)$ and then we obtain the stability constant $K_W$ of $W$ on $L^p(\Sigma)$, where $1\leq p\leq \infty$. Moreover, we determine, under certain conditions, the essential norm of $W$ acting on $L^\infty(\Sigma)$.

Citation

Download Citation

M. R. Jabbarzadeh. M. Jafari Bakhshkandi. "Stability constants for weighted composition operators on $L^p(\Sigma)$." Bull. Belg. Math. Soc. Simon Stevin 24 (2) 271 - 281, april 2017. https://doi.org/10.36045/bbms/1503453710

Information

Published: april 2017
First available in Project Euclid: 23 August 2017

zbMATH: 06850671
MathSciNet: MR3694003
Digital Object Identifier: 10.36045/bbms/1503453710

Subjects:
Primary: 47B33
Secondary: 34K20

Rights: Copyright © 2017 The Belgian Mathematical Society

JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.24 • No. 2 • april 2017
Back to Top