VIEW ALL ABSTRACTS +
Front Matter
Bull. Belg. Math. Soc. Simon Stevin 23 (5), (december 2016)
No abstract available
Articles
Richard Garner, Ross Street
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 643-666, (december 2016) DOI: 10.36045/bbms/1483671619
KEYWORDS: Weighted derivation, Hurwitz series, monoidal category, Joyal species, convolution, Rota-Baxter operator, 18D10, 05A15, 18A32, 18D05, 20H30, 16T30
Andrea Montoli, Diana Rodelo, Tim Van der Linden
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 667-691, (december 2016) DOI: 10.36045/bbms/1483671620
KEYWORDS: categorical Galois theory, admissible Galois structure, central, normal, trivial extension, $\mathcal{S}$-protomodular category, unital category, abelian object, 20M32, 20M50, 11R32, 19C09, 18F30
Hui-Xiang Chen, Hassen Suleman Esmael Mohammed, Weijun Lin, Hua Sun
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 693-711, (december 2016) DOI: 10.36045/bbms/1483671621
KEYWORDS: Green ring, indecomposable module, Taft algebra, 16G60, 16T05
Tomasz Brzeziński
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 713-720, (december 2016) DOI: 10.36045/bbms/1483671622
KEYWORDS: Rota-Baxter system, curved differential graded algebra, pre-Lie algebra, 16S99, 16E45
Lars Kadison
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 721-752, (december 2016) DOI: 10.36045/bbms/1483671623
KEYWORDS: subgroup depth, Morita equivalent ring extensions, Frobenius extension, semisimple extension, tensor category, core Hopf ideals, relative Maschke theorem, 16D20, 16D90, 16T05, 18D10, 20C05
G. Janelidze
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 753-768, (december 2016) DOI: 10.36045/bbms/1483671624
KEYWORDS: categorical Galois theory, Difference Galois theory, Differential Galois theory, Galois groupoid, Normal extension, difference equation, Differential equation, Wronski determinant, Casorati determinant, 12H10, 12H05, 18A40, 18A99
Peter Schauenburg
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 769-777, (december 2016) DOI: 10.36045/bbms/1483671625
Gongxiang Liu, Fred Van Oystaeyen, Yinhuo Zhang
Bull. Belg. Math. Soc. Simon Stevin 23 (5), 779-800, (december 2016) DOI: 10.36045/bbms/1483671626
KEYWORDS: Quasi-Hopf algebra, Frobenius-Lusztig kernel, genuine quasi-Hopf algebra, 16T20, 16G10
Back to Top