Open Access
march 2015 On a type of almost Kenmotsu manifolds with harmonic curvature tensors
Yaning Wang, Ximin Liu
Bull. Belg. Math. Soc. Simon Stevin 22(1): 15-24 (march 2015). DOI: 10.36045/bbms/1426856854

Abstract

Let $M^{2n+1}$ be an almost Kenmotsu manifold with the characteristic vector field belonging to the $(k,\mu)'$-nullity distribution. We prove that the curvature tensor of $M^{2n+1}$ is harmonic if and only if $M^{2n+1}$ is locally isometric to either a product space $\mathbb{H}^{n+1}(-4)\times\mathbb{R}^n$, or an Einstein warped product $C\times_{f}N^{2n}$ of an open interval and a Ricci-flat almost Kähler manifold.

Citation

Download Citation

Yaning Wang. Ximin Liu. "On a type of almost Kenmotsu manifolds with harmonic curvature tensors." Bull. Belg. Math. Soc. Simon Stevin 22 (1) 15 - 24, march 2015. https://doi.org/10.36045/bbms/1426856854

Information

Published: march 2015
First available in Project Euclid: 20 March 2015

zbMATH: 1315.53023
MathSciNet: MR3325717
Digital Object Identifier: 10.36045/bbms/1426856854

Subjects:
Primary: 53C15 , 53C25 , 53D15

Keywords: $(k,\mu)'$-nullity distribution , almost Kenmotsu manifold , harmonic curvature tensor , warped produc

Rights: Copyright © 2015 The Belgian Mathematical Society

Vol.22 • No. 1 • march 2015
Back to Top