Open Access
august 2013 Multiple Periodic solutions and Positive Homoclinic Solution for a differential equation
Anderson L. A. de Araujo, Kennedy Martins Pedroso
Bull. Belg. Math. Soc. Simon Stevin 20(3): 535-546 (august 2013). DOI: 10.36045/bbms/1378314514

Abstract

We consider the nonautonomous differential equation of second order $x''- a(t)x+b(t) x^2+c(t)x^{3}=0$, where $a(t),b(t),c(t)$ are $T$-periodic functions. This is a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of at least two $T$-periodic solution for this equation, using coincidence degree theories.

Citation

Download Citation

Anderson L. A. de Araujo. Kennedy Martins Pedroso. "Multiple Periodic solutions and Positive Homoclinic Solution for a differential equation." Bull. Belg. Math. Soc. Simon Stevin 20 (3) 535 - 546, august 2013. https://doi.org/10.36045/bbms/1378314514

Information

Published: august 2013
First available in Project Euclid: 4 September 2013

zbMATH: 1312.34082
MathSciNet: MR3129057
Digital Object Identifier: 10.36045/bbms/1378314514

Subjects:
Primary: 34C25 , 47H11
Secondary: 47H10

Keywords: ‎fixed point theorems , homoclinic solutions , ordinary differential equations , periodic solutions

Rights: Copyright © 2013 The Belgian Mathematical Society

Vol.20 • No. 3 • august 2013
Back to Top