Open Access
Translator Disclaimer
may 2013 The order of the commutator on $SU(3)$ and an application to gauge groups
A. Kono, S. Theriault
Bull. Belg. Math. Soc. Simon Stevin 20(2): 359-370 (may 2013). DOI: 10.36045/bbms/1369316550

Abstract

We show that the commutator map on $SU(3)$ has order $2^{3}\cdot 3\cdot 5$. As an application, we give an upper bound on the number of homotopy types of gauge groups for principal $SU(3)$-bundles over an $n$-sphere.

Citation

Download Citation

A. Kono. S. Theriault. "The order of the commutator on $SU(3)$ and an application to gauge groups." Bull. Belg. Math. Soc. Simon Stevin 20 (2) 359 - 370, may 2013. https://doi.org/10.36045/bbms/1369316550

Information

Published: may 2013
First available in Project Euclid: 23 May 2013

zbMATH: 1270.55006
MathSciNet: MR3082770
Digital Object Identifier: 10.36045/bbms/1369316550

Subjects:
Primary: 55P15 , 57T99
Secondary: 54C35‎

Keywords: $SU(3)$ , commutator , gauge group , homotopy type , order

Rights: Copyright © 2013 The Belgian Mathematical Society

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.20 • No. 2 • may 2013
Back to Top