Open Access
september 2012 Secondary Cohomology and $k$-invariants
Mihai D. Staic
Bull. Belg. Math. Soc. Simon Stevin 19(3): 561-572 (september 2012). DOI: 10.36045/bbms/1347642383

Abstract

We give a construction that associates to a pointed topological space $(X,x_0)$ a homotopy invariant $\,_2\kappa^4$ which we call the secondary invariant. This construction can be seen a ``3-type" generalization of the classical $k$-invariant.

Citation

Download Citation

Mihai D. Staic. "Secondary Cohomology and $k$-invariants." Bull. Belg. Math. Soc. Simon Stevin 19 (3) 561 - 572, september 2012. https://doi.org/10.36045/bbms/1347642383

Information

Published: september 2012
First available in Project Euclid: 14 September 2012

zbMATH: 1259.55008
MathSciNet: MR3050638
Digital Object Identifier: 10.36045/bbms/1347642383

Subjects:
Primary: 55S45
Secondary: 20J06

Keywords: $k$-invariant , Group cohomology

Rights: Copyright © 2012 The Belgian Mathematical Society

Vol.19 • No. 3 • september 2012
Back to Top