Open Access
april 2010 On the existence of projective embeddings of multiveblen configurations
Małgorzata Prażmowska
Bull. Belg. Math. Soc. Simon Stevin 17(2): 259-273 (april 2010). DOI: 10.36045/bbms/1274896205

Abstract

We prove that from among simple multiveblen configurations only combinatorial Grassmannians can be embedded into a Desarguesian projective space. The class of regular multiveblen configurations which are projectively embeddable is determined.

Citation

Download Citation

Małgorzata Prażmowska. "On the existence of projective embeddings of multiveblen configurations." Bull. Belg. Math. Soc. Simon Stevin 17 (2) 259 - 273, april 2010. https://doi.org/10.36045/bbms/1274896205

Information

Published: april 2010
First available in Project Euclid: 26 May 2010

zbMATH: 1196.51003
MathSciNet: MR2663472
Digital Object Identifier: 10.36045/bbms/1274896205

Subjects:
Primary: 51A45
Secondary: 51E10 , 51E20

Keywords: combinatorial Grassmannian , Desargues configuration , multiveblen configuration , partial Steiner triple system , projective embedding

Rights: Copyright © 2010 The Belgian Mathematical Society

Vol.17 • No. 2 • april 2010
Back to Top