Open Access
april 2010 A sharp weighted Wirtinger inequality and some related functional spaces
Raffaella Giova, Tonia Ricciardi
Bull. Belg. Math. Soc. Simon Stevin 17(2): 209-218 (april 2010). DOI: 10.36045/bbms/1274896200

Abstract

We consider the generalized Wirtinger inequality \[ \left( \int_{0}^{T} a |u|^q \right)^{1/q} \le C \biggm(\int_{0}^{T} a^{1-p} |u'|^{p}\biggm)^{1/p}, \] with $p,q>1$, $T>0$, $a\in L^1[0,T]$, $a\ge0$, $a\not\equiv0$ and where $u$ is a $T$-periodic function satisfying the constraint \[ \int_{0}^{T} a |u|^{q-2}u =0. \] We provide the best constant $C>0$ as well as all extremals. Furthermore, we characterize the natural functional space where the inequality is defined.

Citation

Download Citation

Raffaella Giova. Tonia Ricciardi. "A sharp weighted Wirtinger inequality and some related functional spaces." Bull. Belg. Math. Soc. Simon Stevin 17 (2) 209 - 218, april 2010. https://doi.org/10.36045/bbms/1274896200

Information

Published: april 2010
First available in Project Euclid: 26 May 2010

zbMATH: 05735929
MathSciNet: MR2663466
Digital Object Identifier: 10.36045/bbms/1274896200

Subjects:
Primary: 26D15

Keywords: best constant , generalized trigonometric functions , weighted Sobolev space , Weighted Wirtinger inequality

Rights: Copyright © 2010 The Belgian Mathematical Society

Vol.17 • No. 2 • april 2010
Back to Top