Abstract
We construct metrizable simplices $X_1$ and $X_2$ and a homeomorphism $\varphi:\overline{ext X_1}\to\overline{ext X_2}$ such that $\varphi(ext X_1)=ext X_2$, the space $\mathfrak{A}(X_1)$ of all affine continuous functions on $X_1$ is complemented in $\mathcal C(X_1)$ and $\mathfrak{A}(X_2)$ is not complemented in any $\mathcal C(K)$ space. This shows that complementability of the space $\mathfrak{A}(X)$ cannot be determined by topological properties of the couple $(ext X,\overline{ext X})$.
Citation
Miroslav Bačák. Jiří Spurný. "Complementability of spaces of affine continuous functions on simplices." Bull. Belg. Math. Soc. Simon Stevin 15 (3) 465 - 472, September 2008. https://doi.org/10.36045/bbms/1222783093
Information