Open Access
November 2007 Inner invariant extensions of Dirac measures on compactly cancellative topological semigroups
M. Lashkarizadeh Bami, B. Mohammadzadeh, R. Nasr-Isfahani
Bull. Belg. Math. Soc. Simon Stevin 14(4): 699-708 (November 2007). DOI: 10.36045/bbms/1195157138

Abstract

Let ${\cal S}$ be a left compactly cancellative foundation semigroup with identity $e$ and $M_a({\cal S})$ be its semigroup algebra. In this paper, we give a characterization for the existence of an inner invariant extension of $\delta_e$ from $C_b({\cal S})$ to a mean on $L^\infty({\cal S},M_a({\cal S}))$ in terms of asymptotically central bounded approximate identities in $M_a({\cal S})$. We also consider topological inner invariant means on $L^\infty({\cal S},M_a({\cal S}))$ to study strict inner amenability of $M_a({\cal S})$ and their relation with strict inner amenability of ${\cal S}$.

Citation

Download Citation

M. Lashkarizadeh Bami. B. Mohammadzadeh. R. Nasr-Isfahani. "Inner invariant extensions of Dirac measures on compactly cancellative topological semigroups." Bull. Belg. Math. Soc. Simon Stevin 14 (4) 699 - 708, November 2007. https://doi.org/10.36045/bbms/1195157138

Information

Published: November 2007
First available in Project Euclid: 15 November 2007

zbMATH: 1141.43001
MathSciNet: MR2384465
Digital Object Identifier: 10.36045/bbms/1195157138

Subjects:
Primary: ‎43A07‎
Secondary: 43A10 , 43A15 , 46H05

Keywords: Inner invariance , inner invariant extension , mixed identity , strict inner amenability , topological inner invariance

Rights: Copyright © 2007 The Belgian Mathematical Society

Vol.14 • No. 4 • November 2007
Back to Top