Open Access
December 2005 Linear systems on generic $K3$ surfaces
Cindy De Volder, Antonio Laface
Bull. Belg. Math. Soc. Simon Stevin 12(4): 481-489 (December 2005). DOI: 10.36045/bbms/1133793336

Abstract

In this paper we prove the equivalence of two conjectures on linear systems through fat points on a generic $K3$ surface. The first conjecture is exactly as Segre conjecture on the projective plane. Whereas the second characterizes such linear system and can be compared to the Gimigliano-Harbourne-Hirschowitz conjecture.

Citation

Download Citation

Cindy De Volder. Antonio Laface. "Linear systems on generic $K3$ surfaces." Bull. Belg. Math. Soc. Simon Stevin 12 (4) 481 - 489, December 2005. https://doi.org/10.36045/bbms/1133793336

Information

Published: December 2005
First available in Project Euclid: 5 December 2005

zbMATH: 1054.14011
MathSciNet: MR2205992
Digital Object Identifier: 10.36045/bbms/1133793336

Subjects:
Primary: 14C20 , 14J28

Keywords: fat points , generic $K3$ surfaces , Linear systems

Rights: Copyright © 2005 The Belgian Mathematical Society

Vol.12 • No. 4 • December 2005
Back to Top