Open Access
December 2005 Combinatorial and geometrical properties of a class of tilings
Ali Messaoudi
Bull. Belg. Math. Soc. Simon Stevin 12(4): 625-633 (December 2005). DOI: 10.36045/bbms/1133793349

Abstract

In this paper, we consider a tiling generated by a Pisot unit number of degree $d \geq 3$ which has a finite expansible property. We compute the states of a finite automaton which recognizes the boundary of the central tile. We also prove in the case $d=3$ that the interior of each tile is simply connected.

Citation

Download Citation

Ali Messaoudi. "Combinatorial and geometrical properties of a class of tilings." Bull. Belg. Math. Soc. Simon Stevin 12 (4) 625 - 633, December 2005. https://doi.org/10.36045/bbms/1133793349

Information

Published: December 2005
First available in Project Euclid: 5 December 2005

zbMATH: 1132.11338
MathSciNet: MR2206005
Digital Object Identifier: 10.36045/bbms/1133793349

Subjects:
Primary: 11B39 , 52C22 , 68Q70

Keywords: Automata, , Pisot number , quaternion algebra , tiling

Rights: Copyright © 2005 The Belgian Mathematical Society

Vol.12 • No. 4 • December 2005
Back to Top