Open Access
December 2005 Attainable lengths for circular binary words avoiding $k$ powers
Ali Aberkane, James D. Currie
Bull. Belg. Math. Soc. Simon Stevin 12(4): 525-534 (December 2005). DOI: 10.36045/bbms/1133793340

Abstract

We show that binary circular words of length $n$ avoiding $7/3^+$ powers exist for every sufficiently large $n$. This is not the case for binary circular words avoiding $k^+$ powers with $k<7/3$.

Citation

Download Citation

Ali Aberkane. James D. Currie. "Attainable lengths for circular binary words avoiding $k$ powers." Bull. Belg. Math. Soc. Simon Stevin 12 (4) 525 - 534, December 2005. https://doi.org/10.36045/bbms/1133793340

Information

Published: December 2005
First available in Project Euclid: 5 December 2005

zbMATH: 1137.68046
MathSciNet: MR2205996
Digital Object Identifier: 10.36045/bbms/1133793340

Subjects:
Primary: 68R15

Keywords: circular words , Dejean's conjecture , Thue-Morse word

Rights: Copyright © 2005 The Belgian Mathematical Society

Vol.12 • No. 4 • December 2005
Back to Top