Abstract
Withers and Nadarajah [Braz. J. Probab. Stat. 28 (2014) 140–149] gave new expressions for hypergeometric functions when two arguments differ by an integer. Here, we give new expressions for $\int^{x}_{x_{0}}x^{\mu}K_{\nu}(x)\,dx$ when $\mu \pm \nu$ is an integer, where $K_{\nu}(\cdot)$ denotes the modified Bessel function of order $\nu$. Each new expression is a finite sum of terms involving only the gamma function and the modified Bessel function.
Citation
Christopher S. Withers. Saralees Nadarajah. "The integral of the product of a power and Bessel’s $K_{\nu}$ function." Braz. J. Probab. Stat. 28 (4) 461 - 466, November 2014. https://doi.org/10.1214/13-BJPS216
Information