Open Access
November 2014 The integral of the product of a power and Bessel’s $K_{\nu}$ function
Christopher S. Withers, Saralees Nadarajah
Braz. J. Probab. Stat. 28(4): 461-466 (November 2014). DOI: 10.1214/13-BJPS216

Abstract

Withers and Nadarajah [Braz. J. Probab. Stat. 28 (2014) 140–149] gave new expressions for hypergeometric functions when two arguments differ by an integer. Here, we give new expressions for $\int^{x}_{x_{0}}x^{\mu}K_{\nu}(x)\,dx$ when $\mu \pm \nu$ is an integer, where $K_{\nu}(\cdot)$ denotes the modified Bessel function of order $\nu$. Each new expression is a finite sum of terms involving only the gamma function and the modified Bessel function.

Citation

Download Citation

Christopher S. Withers. Saralees Nadarajah. "The integral of the product of a power and Bessel’s $K_{\nu}$ function." Braz. J. Probab. Stat. 28 (4) 461 - 466, November 2014. https://doi.org/10.1214/13-BJPS216

Information

Published: November 2014
First available in Project Euclid: 30 July 2014

zbMATH: 1298.33007
MathSciNet: MR3263059
Digital Object Identifier: 10.1214/13-BJPS216

Keywords: Bessel function , Gamma function , hypergeometric function

Rights: Copyright © 2014 Brazilian Statistical Association

Vol.28 • No. 4 • November 2014
Back to Top