Open Access
April 2003 GARCH processes: structure and estimation
Istv\'an Berkes, Lajos Horv\'ath, Piotr Kokoszka
Author Affiliations +
Bernoulli 9(2): 201-227 (April 2003). DOI: 10.3150/bj/1068128975

Abstract

We study the structure of a GARCH$(p,q)$ sequence. We show that the conditional variance can be written as an infinite sum of the squares of the previous observations and that the representation is unique. We prove the consistency and asymptotic normality of the quasi-maximum likelihood estimator of the parameters of the GARCH$(p,q)$ sequence under mild conditions.

Citation

Download Citation

Istv\'an Berkes. Lajos Horv\'ath. Piotr Kokoszka. "GARCH processes: structure and estimation." Bernoulli 9 (2) 201 - 227, April 2003. https://doi.org/10.3150/bj/1068128975

Information

Published: April 2003
First available in Project Euclid: 6 November 2003

zbMATH: 1064.62094
MathSciNet: MR1997027
Digital Object Identifier: 10.3150/bj/1068128975

Keywords: asymptotic normality , consistency , GARCH$(p,q)$ sequence , Martingales , quasi-maximum likelihood

Rights: Copyright © 2003 Bernoulli Society for Mathematical Statistics and Probability

Vol.9 • No. 2 • April 2003
Back to Top