Open Access
Translator Disclaimer
oct 2000 Krein condition in probabilistic moment problems
Jordan Stoyanov
Author Affiliations +
Bernoulli 6(5): 939-949 (oct 2000).

Abstract

In 1944 M.G. Krein proposed a condition throwing light on the moment problem for absolutely continuous probability distributions. This condition, implying non-uniqueness, is expressed in terms of a normalized logarithmic integral of the density and has different forms in the Hamburger moment problem (for distributions on the whole real line) and in the Stieltjes moment problem (for distributions on the positive real line). Other forms of the Krein condition, together with new conditions (smoothing and growth condition on the density) suggested by G.D. Lin and based on a work by H. Dym and H.P. McKean, led to a unique solution to the moment problem. We present new results, give new proofs of previously known results and discuss related topics.

Citation

Download Citation

Jordan Stoyanov. "Krein condition in probabilistic moment problems." Bernoulli 6 (5) 939 - 949, oct 2000.

Information

Published: oct 2000
First available in Project Euclid: 6 April 2004

zbMATH: 0971.60017
MathSciNet: MR2001I:44014

Keywords: determinate probability distributions , Hamburger moment problem , indeterminate probability distributions , Krein condition , Lin condition , moment sequence , powers of distributions , Stieltjes moment problem

Rights: Copyright © 2000 Bernoulli Society for Mathematical Statistics and Probability

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.6 • No. 5 • oct 2000
Back to Top