Abstract
We consider online computation of expectations of additive state functionals under general path probability measures proportional to products of unnormalised transition densities. These transition densities are assumed to be intractable but possible to estimate, with or without bias. Using pseudo-marginalisation techniques we are able to extend the particle-based, rapid incremental smoother (PaRIS) algorithm proposed in [Bernoulli 23(3) (2017) 1951–1996] to this setting. The resulting algorithm, which has a linear complexity in the number of particles and constant memory requirements, applies to a wide range of challenging path-space Monte Carlo problems, including smoothing in partially observed diffusion processes and models with intractable likelihood. The algorithm is furnished with several theoretical results, including a central limit theorem, establishing its convergence and numerical stability. Moreover, under strong mixing assumptions we establish a novel bound on the asymptotic bias of the algorithm, where n is the path length and ε controls the bias of the transition-density estimators.
Funding Statement
The research of J. Olsson is supported by the Swedish Research Council, Grant 2018-05230.
Citation
Pierre Gloaguen. Sylvain Le Corff. Jimmy Olsson. "A pseudo-marginal sequential Monte Carlo online smoothing algorithm." Bernoulli 28 (4) 2606 - 2633, November 2022. https://doi.org/10.3150/21-BEJ1431
Information