May 2022 Joint inference on extreme expectiles for multivariate heavy-tailed distributions
Simone A. Padoan, Gilles Stupfler
Author Affiliations +
Bernoulli 28(2): 1021-1048 (May 2022). DOI: 10.3150/21-BEJ1375

References

  • Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9 203–228.
  • Bellini, F. and Di Bernardino, E. (2017). Risk management with expectiles. Eur. J. Finance 23 487–506.
  • Bellini, F., Klar, B., Müller, A. and Rosazza Gianin, E. (2014). Generalized quantiles as risk measures. Insurance Math. Econom. 54 41–48.
  • Beranger, B. and Padoan, S.A. (2015). Extreme dependence models. In Extreme Value Modeling and Risk Analysis: Methods and Applications (D. Dey and J. Yan, eds.) CRC Press/CRC.
  • Cai, J.-J., de Haan, L. and Zhou, C. (2013). Bias correction in extreme value statistics with index around zero. Extremes 16 173–201.
  • Cai, J.-J., Einmahl, J.H.J., de Haan, L. and Zhou, C. (2015). Estimation of the marginal expected shortfall: The mean when a related variable is extreme. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 417–442.
  • Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 263–292.
  • Daouia, A., Girard, S. and Stupfler, G. (2019). Extreme M-quantiles as risk measures: From L1 to Lp optimization. Bernoulli 25 264–309.
  • Daouia, A., Girard, S. and Stupfler, G. (2020). Tail expectile process and risk assessment. Bernoulli 26 531–556.
  • de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. New York: Springer.
  • de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to financial time series: Dealing with bias and serial dependence. Finance Stoch. 20 321–354.
  • Drees, H. (1998). Optimal rates of convergence for estimates of the extreme value index. Ann. Statist. 26 434–448.
  • Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 617–657.
  • Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimators of the stable tail dependence function. J. Multivariate Anal. 64 25–47.
  • Ehm, W., Gneiting, T., Jordan, A. and Krüger, F. (2016). Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 505–562.
  • Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Applications of Mathematics (New York) 33. Berlin: Springer.
  • Gneiting, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746–762.
  • Goegebeur, Y., Beirlant, J. and de Wet, T. (2010). Kernel estimators for the second order parameter in extreme value statistics. J. Statist. Plann. Inference 140 2632–2652.
  • Gomes, M.I., Pestana, D. and Caeiro, F. (2009). A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Statist. Probab. Lett. 79 295–303.
  • Hall, P. and Welsh, A.H. (1985). Adaptive estimates of parameters of regular variation. Ann. Statist. 13 331–341.
  • Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163–1174.
  • Hoga, Y. (2018). Detecting tail risk differences in multivariate time series. J. Time Series Anal. 39 665–689.
  • Hurlin, C., Laurent, S., Quaedvlieg, R. and Smeekes, S. (2017). Risk measure inference. J. Bus. Econom. Statist. 35 499–512.
  • Joe, H. (2014). Dependence Modeling with Copulas. Boca Raton, USA: CRC Press/CRC Press.
  • Knight, K. (1999). Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report Univ. Toronto.
  • Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33–50.
  • Mainik, G., Mitov, G. and Rüschendorf, L. (2015). Portfolio optimization for heavy-tailed assets: Extreme risk index vs. Markowitz. J. Empir. Finance 32 115–134.
  • Newey, W.K. and Powell, J.L. (1987). Asymmetric least squares estimation and testing. Econometrica 55 819–847.
  • Padoan, S.A. and Stupfler, G. (2020). Extreme expectile estimation for heavy-tailed time series. arXiv:2004.04078v2.
  • Padoan, S.A. and Stupfler, G. (2022). Supplement to “Joint inference on extreme expectiles for multivariate heavy-tailed distributions.”
  • R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scand. J. Stat. 33 307–335.
  • Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression. Comput. Statist. Data Anal. 56 755–767.
  • Straetmans, S.T.M., Verschoor, W.F.C. and Wolff, C.C.P. (2008). Extreme US stock market fluctuations in the wake of 9/11. J. Appl. Econometrics 23 17–42.
  • Stupfler, G. (2019). On a relationship between randomly and non-randomly thresholded empirical average excesses for heavy tails. Extremes 22 749–769.
  • Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc. 73 812–815.
  • Ziegel, J.F. (2016). Coherence and elicitability. Math. Finance 26 901–918.
JOURNAL ARTICLE
28 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.28 • No. 2 • May 2022
Back to Top