November 2021 Online drift estimation for jump-diffusion processes
Theerawat Bhudisaksang, Álvaro Cartea
Author Affiliations +
Bernoulli 27(4): 2494-2518 (November 2021). DOI: 10.3150/20-BEJ1319

Abstract

We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.

Citation

Download Citation

Theerawat Bhudisaksang. Álvaro Cartea. "Online drift estimation for jump-diffusion processes." Bernoulli 27 (4) 2494 - 2518, November 2021. https://doi.org/10.3150/20-BEJ1319

Information

Received: 1 April 2020; Revised: 1 November 2020; Published: November 2021
First available in Project Euclid: 24 August 2021

MathSciNet: MR4303892
zbMATH: 1475.60160
Digital Object Identifier: 10.3150/20-BEJ1319

Keywords: extended Itô lemma , jump-diffusion , Lévy process , non-local Poisson equation , online estimation , SGDCT

Rights: Copyright © 2021 ISI/BS

Vol.27 • No. 4 • November 2021
Back to Top