Open Access
August 2020 On estimation of nonsmooth functionals of sparse normal means
O. Collier, L. Comminges, A.B. Tsybakov
Bernoulli 26(3): 1989-2020 (August 2020). DOI: 10.3150/19-BEJ1180

Abstract

We study the problem of estimation of $N_{\gamma }(\theta )=\sum_{i=1}^{d}|\theta _{i}|^{\gamma }$ for $\gamma >0$ and of the $\ell _{\gamma }$-norm of $\theta $ for $\gamma \ge 1$ based on the observations $y_{i}=\theta _{i}+\varepsilon \xi _{i}$, $i=1,\ldots,d$, where $\theta =(\theta _{1},\dots ,\theta _{d})$ are unknown parameters, $\varepsilon >0$ is known, and $\xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $\theta $ and we propose estimators achieving this rate.

Citation

Download Citation

O. Collier. L. Comminges. A.B. Tsybakov. "On estimation of nonsmooth functionals of sparse normal means." Bernoulli 26 (3) 1989 - 2020, August 2020. https://doi.org/10.3150/19-BEJ1180

Information

Received: 1 May 2018; Revised: 1 October 2019; Published: August 2020
First available in Project Euclid: 27 April 2020

zbMATH: 07193950
MathSciNet: MR4091099
Digital Object Identifier: 10.3150/19-BEJ1180

Keywords: Functional estimation , nonsmooth functional , norm estimation , polynomial approximation , Sparsity

Rights: Copyright © 2020 Bernoulli Society for Mathematical Statistics and Probability

Vol.26 • No. 3 • August 2020
Back to Top