Abstract
We consider inference in the scalar diffusion model $\,\mathrm{d}X_{t}=b(X_{t})\,\mathrm{d}t+\sigma(X_{t})\,\mathrm{d}W_{t}$ with discrete data $(X_{j\Delta_{n}})_{0\leq j\leq n}$, $n\to\infty$, $\Delta_{n}\to0$ and periodic coefficients. For $\sigma$ given, we prove a general theorem detailing conditions under which Bayesian posteriors will contract in $L^{2}$-distance around the true drift function $b_{0}$ at the frequentist minimax rate (up to logarithmic factors) over Besov smoothness classes. We exhibit natural nonparametric priors which satisfy our conditions. Our results show that the Bayesian method adapts both to an unknown sampling regime and to unknown smoothness.
Citation
Kweku Abraham. "Nonparametric Bayesian posterior contraction rates for scalar diffusions with high-frequency data." Bernoulli 25 (4A) 2696 - 2728, November 2019. https://doi.org/10.3150/18-BEJ1067
Information