Open Access
November 2017 Distribution of linear statistics of singular values of the product of random matrices
Friedrich Götze, Alexey Naumov, Alexander Tikhomirov
Bernoulli 23(4B): 3067-3113 (November 2017). DOI: 10.3150/16-BEJ837

Abstract

In this paper we consider the product of two independent random matrices ${\mathbf{X}}^{(1)}$ and ${\mathbf{X}}^{(2)}$. Assume that $X_{jk}^{(q)},1\le j,k\le n,q=1,2$, are i.i.d. random variables with $\mathbb{E}X_{jk}^{(q)}=0,\operatorname{Var}X_{jk}^{(q)}=1$. Denote by $s_{1}({\mathbf{W}}),\ldots,s_{n}({\mathbf{W}})$ the singular values of ${\mathbf{W}}:=\frac{1}{n}{\mathbf{X}}^{(1)}\mathbf{X}^{(2)}$. We prove the central limit theorem for linear statistics of the squared singular values $s_{1}^{2}({\mathbf{W}}),\ldots,s_{n}^{2}({\mathbf{W}})$ showing that the limiting variance depends on $\kappa_{4}:=\mathbb{E}(X_{11}^{(1)})^{4}-3$.

Citation

Download Citation

Friedrich Götze. Alexey Naumov. Alexander Tikhomirov. "Distribution of linear statistics of singular values of the product of random matrices." Bernoulli 23 (4B) 3067 - 3113, November 2017. https://doi.org/10.3150/16-BEJ837

Information

Received: 1 July 2015; Revised: 1 February 2016; Published: November 2017
First available in Project Euclid: 23 May 2017

zbMATH: 06778279
MathSciNet: MR3654799
Digital Object Identifier: 10.3150/16-BEJ837

Keywords: central limit theorem , characteristic functions , Fuss–Catalan distributions , Products of random matrices

Rights: Copyright © 2017 Bernoulli Society for Mathematical Statistics and Probability

Vol.23 • No. 4B • November 2017
Back to Top