Abstract
In many prediction problems, it is not uncommon that the number of variables used to construct a forecast is of the same order of magnitude as the sample size, if not larger. We then face the problem of constructing a prediction in the presence of potentially large estimation error. Control of the estimation error is either achieved by selecting variables or combining all the variables in some special way. This paper considers greedy algorithms to solve this problem. It is shown that the resulting estimators are consistent under weak conditions. In particular, the derived rates of convergence are either minimax or improve on the ones given in the literature allowing for dependence and unbounded regressors. Some versions of the algorithms provide fast solution to problems such as Lasso.
Citation
Alessio Sancetta. "Greedy algorithms for prediction." Bernoulli 22 (2) 1227 - 1277, May 2016. https://doi.org/10.3150/14-BEJ691
Information