Abstract
Pickands dependence functions characterize bivariate extreme value copulas. In this paper, we study the class of polynomial Pickands functions. We provide a solution for the characterization of such polynomials of degree at most $m+2$, $m\geq0$, and show that these can be parameterized by a vector in $\mathbb{R}^{m+1}$ belonging to the intersection of two ellipsoids. We also study the class of Bernstein approximations of order $m+2$ of Pickands functions which are shown to be (polynomial) Pickands functions and parameterized by a vector in $\mathbb{R}^{m+1}$ belonging to a polytope. We give necessary and sufficient conditions for which a polynomial Pickands function is in fact a Bernstein approximation of some Pickands function. Approximation results of Pickands dependence functions by polynomials are given. Finally, inferential methodology is discussed and comparisons based on simulated data are provided.
Citation
Simon Guillotte. François Perron. "Polynomial Pickands functions." Bernoulli 22 (1) 213 - 241, February 2016. https://doi.org/10.3150/14-BEJ656
Information