Székely, Rizzo and Bakirov (*Ann. Statist.* **35** (2007) 2769–2794) and Székely and Rizzo (*Ann. Appl. Statist.* **3** (2009) 1236–1265), in two seminal papers, introduced the powerful concept of distance correlation as a measure of dependence between sets of random variables. We study in this paper an affinely invariant version of the distance correlation and an empirical version of that distance correlation, and we establish the consistency of the empirical quantity. In the case of subvectors of a multivariate normally distributed random vector, we provide exact expressions for the affinely invariant distance correlation in both finite-dimensional and asymptotic settings, and in the finite-dimensional case we find that the affinely invariant distance correlation is a function of the canonical correlation coefficients. To illustrate our results, we consider time series of wind vectors at the Stateline wind energy center in Oregon and Washington, and we derive the empirical auto and cross distance correlation functions between wind vectors at distinct meteorological stations.

## References

*Special Functions. Encyclopedia of Mathematics and Its Applications*

**71**. Cambridge: Cambridge Univ. Press. MR1688958[1] Andrews, G.E., Askey, R. and Roy, R. (1999).

*Special Functions. Encyclopedia of Mathematics and Its Applications*

**71**. Cambridge: Cambridge Univ. Press. MR1688958

*Group Invariance Applications in Statistics. NSF-CBMS Regional Conference Series in Probability and Statistics*

**1**. Hayward, CA: IMS. MR1089423[2] Eaton, M.L. (1989).

*Group Invariance Applications in Statistics. NSF-CBMS Regional Conference Series in Probability and Statistics*

**1**. Hayward, CA: IMS. MR1089423

*J. Amer. Statist. Assoc.*

**101**968–979. MR2324108 10.1198/016214506000000456[3] Gneiting, T., Larson, K., Westrick, K., Genton, M.G. and Aldrich, E. (2006). Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method.

*J. Amer. Statist. Assoc.*

**101**968–979. MR2324108 10.1198/016214506000000456

*J. Mach. Learn. Res.*

**13**723–773. MR2913716[5] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. and Smola, A. (2012). A kernel two-sample test.

*J. Mach. Learn. Res.*

**13**723–773. MR2913716

*Trans. Amer. Math. Soc.*

**301**781–811. MR882715[6] Gross, K.I. and Richards, D.S.P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions.

*Trans. Amer. Math. Soc.*

**301**781–811. MR882715

*Biometrika*

**100**503–510. MR3068450 10.1093/biomet/ass070[7] Heller, R., Heller, Y. and Gorfine, M. (2013). A consistent multivariate test of association based on ranks of distances.

*Biometrika*

**100**503–510. MR3068450 10.1093/biomet/ass070

*J. Amer. Statist. Assoc.*

**105**92–104. MR2757195 10.1198/jasa.2009.ap08117[8] Hering, A.S. and Genton, M.G. (2010). Powering up with space-time wind forecasting.

*J. Amer. Statist. Assoc.*

**105**92–104. MR2757195 10.1198/jasa.2009.ap08117

*Ann. Math. Statist.*

**35**475–501. MR181057 10.1214/aoms/1177703550 euclid.aoms/1177703550 [9] James, A.T. (1964). Distributions of matrix variates and latent roots derived from normal samples.

*Ann. Math. Statist.*

**35**475–501. MR181057 10.1214/aoms/1177703550 euclid.aoms/1177703550

*Math. Comp.*

**75**833–846. MR2196994 10.1090/S0025-5718-06-01824-2[10] Koev, P. and Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument.

*Math. Comp.*

**75**833–846. MR2196994 10.1090/S0025-5718-06-01824-2

*Ann. Appl. Stat.*

**3**1270–1278. MR2752129 euclid.aoas/1267453935 [11] Kosorok, M.R. (2009). Discussion of: Brownian distance covariance.

*Ann. Appl. Stat.*

**3**1270–1278. MR2752129 euclid.aoas/1267453935

*Ann. Appl. Stat.*

**7**1247. MR3113509 10.1214/13-AOAS636[12] Kosorok, M.R. (2013). Correction: Discussion of Brownian distance covariance.

*Ann. Appl. Stat.*

**7**1247. MR3113509 10.1214/13-AOAS636

*Ann. Appl. Stat.*

**3**1233–1235. MR2752126 10.1214/09-AOAS34INTRO euclid.aoas/1267453932 [14] Newton, M.A. (2009). Introducing the discussion paper by Székely and Rizzo.

*Ann. Appl. Stat.*

**3**1233–1235. MR2752126 10.1214/09-AOAS34INTRO euclid.aoas/1267453932

*Ann. Appl. Stat.*

**3**1295–1298. MR2752133 10.1214/09-AOAS312F euclid.aoas/1267453939 [15] Rémillard, B. (2009). Discussion of: Brownian distance covariance.

*Ann. Appl. Stat.*

**3**1295–1298. MR2752133 10.1214/09-AOAS312F euclid.aoas/1267453939

*Science*

**334**1518–1524.[16] Reshef, D.N., Reshef, J.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M. and Sabeti, P.C. (2011). Detecting novel associations in large data sets.

*Science*

**334**1518–1524.

*et al. Science*

**334**(2011) 1518–1524. Unpublished manuscript. Available at http://www-stat.stanford.edu/~tibs/reshef/comment.pdf.[18] Simon, N. and Tibshirani, R. (2012). Comment on “Detecting novel associations in large data sets,” by Reshef

*et al. Science*

**334**(2011) 1518–1524. Unpublished manuscript. Available at http://www-stat.stanford.edu/~tibs/reshef/comment.pdf.

*Ann. Appl. Stat.*

**3**1236–1265. MR2752127 10.1214/09-AOAS312 euclid.aoas/1267453933 [20] Székely, G.J. and Rizzo, M.L. (2009). Brownian distance covariance.

*Ann. Appl. Stat.*

**3**1236–1265. MR2752127 10.1214/09-AOAS312 euclid.aoas/1267453933

*J. Multivariate Anal.*

**117**193–213. MR3053543 10.1016/j.jmva.2013.02.012[22] Székely, G.J. and Rizzo, M.L. (2013). The distance correlation $t$-test of independence in high dimension.

*J. Multivariate Anal.*

**117**193–213. MR3053543 10.1016/j.jmva.2013.02.012

*Ann. Statist.*

**35**2769–2794. MR2382665 10.1214/009053607000000505 euclid.aos/1201012979 [23] Székely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007). Measuring and testing dependence by correlation of distances.

*Ann. Statist.*

**35**2769–2794. MR2382665 10.1214/009053607000000505 euclid.aos/1201012979

*J. Time Series Anal.*

**33**438–457. MR2915095 10.1111/j.1467-9892.2011.00780.x[24] Zhou, Z. (2012). Measuring nonlinear dependence in time-series, a distance correlation approach.

*J. Time Series Anal.*

**33**438–457. MR2915095 10.1111/j.1467-9892.2011.00780.x