Open Access
August 2014 Asymptotics of nonparametric L-1 regression models with dependent data
Zhibiao Zhao, Ying Wei, Dennis K.J. Lin
Bernoulli 20(3): 1532-1559 (August 2014). DOI: 10.3150/13-BEJ532

Abstract

We investigate asymptotic properties of least-absolute-deviation or median quantile estimates of the location and scale functions in nonparametric regression models with dependent data from multiple subjects. Under a general dependence structure that allows for longitudinal data and some spatially correlated data, we establish uniform Bahadur representations for the proposed median quantile estimates. The obtained Bahadur representations provide deep insights into the asymptotic behavior of the estimates. Our main theoretical development is based on studying the modulus of continuity of kernel weighted empirical process through a coupling argument. Progesterone data is used for an illustration.

Citation

Download Citation

Zhibiao Zhao. Ying Wei. Dennis K.J. Lin. "Asymptotics of nonparametric L-1 regression models with dependent data." Bernoulli 20 (3) 1532 - 1559, August 2014. https://doi.org/10.3150/13-BEJ532

Information

Published: August 2014
First available in Project Euclid: 11 June 2014

zbMATH: 06327918
MathSciNet: MR3217453
Digital Object Identifier: 10.3150/13-BEJ532

Keywords: Bahadur representation , coupling argument , least-absolute-deviation estimation , longitudinal data , nonparametric estimation , time series , weighted empirical process

Rights: Copyright © 2014 Bernoulli Society for Mathematical Statistics and Probability

Vol.20 • No. 3 • August 2014
Back to Top