Open Access
May 2012 A multivariate piecing-together approach with an application to operational loss data
Stefan Aulbach, Verena Bayer, Michael Falk
Bernoulli 18(2): 455-475 (May 2012). DOI: 10.3150/10-BEJ343

Abstract

The univariate piecing-together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. We propose a multivariate extension. First it is shown that an arbitrary copula is in the domain of attraction of a multivariate extreme value distribution if and only if its upper tail can be approximated by the upper tail of a multivariate GPD with uniform margins.

The multivariate PT then consists of two steps: The upper tail of a given copula $C$ is cut off and substituted by a multivariate GPD copula in a continuous manner. The result is again a copula. The other step consists of the transformation of each margin of this new copula by a given univariate distribution function.

This provides, altogether, a multivariate distribution function with prescribed margins whose copula coincides in its central part with $C$ and in its upper tail with a GPD copula.

When applied to data, this approach also enables the evaluation of a wide range of rational scenarios for the upper tail of the underlying distribution function in the multivariate case. We apply this approach to operational loss data in order to evaluate the range of operational risk.

Citation

Download Citation

Stefan Aulbach. Verena Bayer. Michael Falk. "A multivariate piecing-together approach with an application to operational loss data." Bernoulli 18 (2) 455 - 475, May 2012. https://doi.org/10.3150/10-BEJ343

Information

Published: May 2012
First available in Project Euclid: 16 April 2012

zbMATH: 1238.62062
MathSciNet: MR2922457
Digital Object Identifier: 10.3150/10-BEJ343

Keywords: copula , domain of multivariate attraction , GPD copula , Multivariate extreme value distribution , Multivariate generalized Pareto distribution , operational loss , peaks over threshold , piecing together

Rights: Copyright © 2012 Bernoulli Society for Mathematical Statistics and Probability

Vol.18 • No. 2 • May 2012
Back to Top